322 research outputs found
Preliminary Canopy Removal Experiments in Algal Dominated Communities Low on the Shore and in the Shallow Subtidal on the Isle of Man
The algal dominated communities immediately above and below the low-water spring level on a moderately exposed Manx shore were investigated by canopy removal experiments. Fucus serratus, Laminaria digitata and L. hyperborea were removed. Competition was shown to be important in determining the zonation of L. digitata and the distribution along the wave exposure gradient of other species such as Alaria esculenta, Desmarestia aculeata and D. viridis, and L. saccharina. Many species of algal epiphytes were early colonizers of canopy removal areas suggesting that competition from canopy algae usually restricts them to an epiphytic habit. The results indicate that interactions between macrophytes are much more important than grazing in structuring these communities
Habitat and distribution of the warm-water barnacle Solidobalanus fallax (Crustacea: Cirripedia)
New records are given of the occurrence of the warm-water barnacle Solidobalanus fallax in Britain and Europe. This barnacle is not found on rocks or stones, but settles on biological substrata, including algae, cnidarians, bivalves, gastropods and crustaceans. It also settles on plastic bags and nets, plastic-coated objects such as crab and lobster pots and octopus pots made of ceramic or plastic. With one exception the species was unrecorded in Europe before 1980; it may have increased in abundance during recent years as a result of rising temperatures. The cyprid larvae, which can metamorphose on plastic Petri dishes, appear to be adapted to seek out ‘low energy’ surfaces. One of the habitats colonized by S. fallax is the sea-fan Eunicella verrucosa, where it seems to have increased in recent years, possibly to the detriment of the cnidarian host. Solidobalanus fallax has the potential to be a serious pest of fish-farming structures to the south of Britai
Failure of Sandwich Composite Structure Containing Face-sheet/Core Disbonds – An Experimental Study
Honeycomb sandwich specimens containing manufactured circular disbonds were loaded to failure in bending. Particular emphasis was placed on accurately identifying the occurrence of disbond buckling and growth initiation, as these two events are difficult to monitor. The test results are presented and then the methods used to identify disbond buckling and growth initiation are described. The method of identifying disbond buckling was very successful. The method of identifying growth initiation was largely successful but improvements are suggested. Finally, conclusions are presented and recommendations made regarding design and repair considerations. The study was performed to provide data against which predictive models can be validated, filling a large gap in the published literature regarding experimental results for disbonded sandwich structure
Do Clothes Really Make the Man or Woman?
This research seeks to determine the importance of interview apparel and shoes to pre-professionals and professionals involved in the interviewing and hiring of individuals for retail management positions. Surveys containing pictures of five men and women in various types of dress ranging from casual to professional were posted in Survey Monkey. Results indicate that clothing and footwear do influence hiring decisions for management positions in retail. Human resource professionals and upper management expect pre-professionals to recognize and wear professional dress when interviewing. The undergraduate students surveyed did not always agree with what garments and shoes would be considered professional dress, and these results give educators information to include when preparing pre-professionals for interviews
Genomic Instability in Regions Adjacent to a Highly Conserved \u3ci\u3epch\u3c/i\u3e Prophage in \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Generates Diversity in Expression Patterns of the LEE Pathogenicity Island
The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of
enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage
Genomic Instability in Regions Adjacent to a Highly Conserved \u3ci\u3epch\u3c/i\u3e Prophage in \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Generates Diversity in Expression Patterns of the LEE Pathogenicity Island
The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of
enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage
Distinguishing globally-driven changes from regional- and local-scale impacts: the case for long-term and broad-scale studies of recovery from pollution
Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that “baselines” or “reference states” are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world
Hydrothermal waters enriched in silica promote the development of a sponge community in North Sulawesi (Indonesia)
Two shallow hydrothermal vents were investigated by SCUBA diving to evaluate their influence on the structure and diversity of a sponge community living close to the vent outflow, in the equatorial Pacific Ocean just off the coast of North Sulawesi, Indonesia (1°40.361ʹN, 125°8.112ʹE). No sponges identified were vent-obligate species, since they are found in the surrounding coral reefs too. The sponges were strongly attracted by the vent, concentrating in an area of a few meters around it, where they reached covering values up to 70% in the deeper vent and up to 42% in the shallower one. The high silica concentration, 8.5 mg L−1Si (deep vent) and 5 mg L−1Si (shallow vent), in hot spring water (90°C) was the putative environmental factor driving the sponge settlement and growth. These organisms take advantage of the increased silica availability that, facilitating skeleton formation, probably promotes sponge growth. This hypothesis is in agreement with the evidence that the spicules of the sponge specimens living around the hot springs have a thickness about double that of conspecific specimens present on the coral reefs at least 300 m away
Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps
One of the main limitations to understanding the evolutionary history of hydrothermal vent and cold seep communities is the identification of tube fossils from ancient deposits. Tube-dwelling annelids are some of the most conspicuous inhabitants of modern vent and seep ecosystems, and ancient vent and seep tubular fossils are usually considered to have been made by annelids. However, the taxonomic affinities of many tube fossils from vents and seeps are contentious, or have remained largely undetermined due to difficulties in identification. In this study, we make a detailed chemical (Fourier-transform infrared spectroscopy and pyrolysis gas-chromatography mass-spectrometry) and morphological assessment of modern annelid tubes from six families, and fossil tubes (seven tube types from the Cenozoic, 12 Mesozoic and four Palaeozoic) from hydrothermal vent and cold seep environments. Characters identified from these investigations were used to explore for the first time the systematics of ancient vent and seep tubes within a cladistic framework. Results reveal details of the compositions and ultrastructures of modern tubes, and also suggest that two types of tubes from ancient vent localities were made by the annelid family Siboglinidae, which often dominates modern vents and seeps. Our results also highlight that several vent and seep tube fossils formerly thought to have been made by annelids cannot be assigned an annelid affiliation with any certainty. The findings overall improve the level of quality control with regard to interpretations of fossil tubes, and, most importantly, suggest that siboglinids likely occupied Mesozoic vents and seeps, greatly increasing the minimum age of the clade relative to earlier molecular estimates
The Western English Channel contains a persistent microbial seed bank
Robust seasonal dynamics in microbial community composition have previously been observed in the English Channel L4 marine observatory. These could be explained either by seasonal changes in the taxa present at the L4 site, or by the continuous modulation of abundance of taxa within a persistent microbial community. To test these competing hypotheses, deep sequencing of 16S rRNA from one randomly selected time point to a depth of 10 729 927 reads was compared with an existing taxonomic survey data covering 6 years. When compared against the 6-year survey of 72 shallow sequenced time points, the deep sequenced time point maintained 95.4% of the combined shallow OTUs. Additionally, on average, 99.75%±0.06 (mean±s.d.) of the operational taxonomic units found in each shallow sequenced sample were also found in the single deep sequenced sample. This suggests that the vast majority of taxa identified in this ecosystem are always present, but just in different proportions that are predictable. Thus observed changes in community composition are actually variations in the relative abundance of taxa, not, as was previously believed, demonstrating extinction and recolonization of taxa in the ecosystem through time
- …