38,410 research outputs found
Small V/STOL aircraft analysis, volume 1
A study has been made of the economic viability of advanced V/STOL aircraft concepts in performing general aviation missions. A survey of general aviation aircraft users, operators, and manufacturers indicated that personnel transport missions formulated around business executive needs, commuter air service, and offshore oil supply are the leading potential areas of application using VTOL aircraft. Advanced VTOL concepts potentially available in the late 1970 time period were evaluated as alternatives to privately owned contemporary aircraft and commercial airline service in satisfying these personnel transport needs. Economic analysis incorporating the traveler's value of time as the principle figure of merit were used to identify the relative merits of alternative VTOL air transportation concepts
Water vapor diffusion membranes
The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial
Temperature sensitivity of Eppley broadband radiometers
Broadband radiometers manufactured by Eppley Laboratories Inc. are commonly used to measure irradiance from both ground-based and aircraft platforms. Namely, the pyranometer (Model PSP) measures irradiance in the .3 to 3.0 micron spectral region while the pyrgeometer (Model PIR) senses energy in the 4 to 50 micron region. The two instruments have a similar thermopile construction but different filters to achieve the appropriate spectral selection. During the fall of 1986, the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) commenced with the first cirrus Intensive Field Observation (IFO) conducted in Central Wisconsin. Due to the nature of this field project, pyranometers and pyrgeometers manufactured by Eppley were flown on NCAR's high altitude research aircraft, the Sabreliner. Inherent in the construction of these radiometers is temperature compensation circuitry designed to make the instrument sensitivity nominally constant over a temperature range from -20 to +40 C. Because the Sabreliner flew at high altitudes where temperatures were as cold as -70 C, it was necessary to determine the radiometers relative sensitivity to temperatures below -20 C and apply appropriate corrections to the FIRE radiation data set. A procedure to perform this calibration is outlined. It is meant to serve as a supplement to calibration procedures
Radiative properties of cirrus clouds inferred from broadband measurements during FIRE
It is well known that clouds are significant modulators of weather and climate because of their effects on the radiation field and thus on the energy balance of the earth atmosphere system. As a result, the accurate prediction of weather and climate depends to a significant degree on the accuracy with which cloud radiation interactions can be described. The broadband radiative and microphysical properties of five cirrus cloud systems are reported, as observed from the NCAR Sabreliner during the FIRE first Cirrus IFO, in order to better understand cirrus cloud-radiation interactions. A broadband infrared (BBIR) radiative transfer model is used to deduce BBIR absorption coefficients in order to assess the impact of the cirrus clouds on infrared radiation. The relationships of these absorption coefficients to temperature and microphysical characteristics are explored
Rocket measurements of electron temperature in the E region
The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc
Radiative properties of Cirrus clouds: FIRE IFO case October 28, 1986
A description of the radiative properties of two cirrus clouds sampled on 10/28/88 in the FIRE cirrus IFO is presented. The clouds are characterized in terms of the broadband infrared effective emittance, cloud fractional absorptance, shortwave heating rate, cloud albedo and vertical velocity. The broadband fluxes used in these calculations were obtained from measurements made by pyranometers and pyrgeometers. The shortwave irradiances were corrected to a horizontal plane and normalized to the same time by taking into account Sabreliner flight information (i.e., pitch, roll, heading and angle of attack), as well as sun-earth geometry considerations. Since only one aircraft was used, broadband fluxes at different levels in the cloud were not measured simultaneously. As a result, sampling errors may occur due to the nonsteady state of the cloud field or due to the possibility that the flight legs were not flown directly above or below each other. To minimize these errors and to simplify the analysis, the necessary variables were averaged and the averages used in the calculations. The downwelling shortwave and longwave irradiances were used as selection criteria to remove cloud free data encountered along the data sampling leg
Numerical analysis and simulation of an assured crew return vehicle flow field
A lifting body was proposed as a candidate for the Assured Crew Return Vehicle (ACRV) which will serve as a crew rescue vehicle for the Space Station Freedom. The focus is on body surface definition, both surface and volume grid definition, and the computation of inviscid flow fields about the vehicle at wind tunnel conditions. Very good agreement is shown between the computed aerodynamic characteristics of the vehicle at M(sub infinity) = 10 and those measured in wind tunnel tests at high Reynolds numbers
Surface temperatures and temperature gradient features of the US Gulf Coast waters
Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field
Photosynthesis-irradiance responses in the Ross Sea, Antarctica: a meta-analysis
A meta-analysis of photosynthesis-irradiance measurements was completed using data from the Ross Sea, Antarctica, using a total of 417 independent measurements. P-m(B), the maximum, chlorophyll-specific, irradiancesaturated rate of photosynthesis, averaged 1.1 +/- 0.06 mu gC (mu g Chl)(-1) h(-1). Light-limited, chlorophyll-specific photosynthetic rates (alpha(B)) averaged 0.030 +/- 0.023 mu gC (mu g Chl)(-1) h(-1) (mu mol quanta m(-2) s(-1))(-1). Significant variations in P-m(B) and alpha(B) were found as a function of season, with spring maximum photosynthetic rates being 60% greater than those in summer. Similarly, alpha values were 48% greater in spring. There was no detectable effect of sampling location on the photosynthetic parameters, and temperature and macronutrient (NO3) concentrations also did not have an influence. However, irradiance and carbon dioxide concentrations, when altered under controlled conditions, exerted significant influences on photosynthetic parameters. Specifically, reduced irradiance resulted in significantly decreased P-m(B) and increased alpha(B) values, and increased CO2 concentrations resulted in significantly increased P-m(B) and alpha(B) values. Comparison of photosynthetic parameters derived at stations where iron concentrations were above and below 0.1nM indicated that reduced iron levels were associated with significantly increased P-m(B) values, confirming the importance of iron within the photosynthetic process. No significant difference was detected between stations dominated by diatoms and those dominated by the haptophyte Phaeocystis antarctica. The meta-analysis confirms the photosynthetic rates predicted from global analyses that are based solely on temperature and irradiance availability, but suggests that, for more accurate predictions of productivity in polar systems, a more detailed model that includes temporal effects of photosynthetic parameters will be required
Meteorological interpretation of Nimbus High Resolution Infrared /HRIR/ data
Nimbus satellite high resolution infrared photographic data analysi
- …