260 research outputs found

    Temperature dependence of the upper critical field of an anisotropic singlet superconductivity in a square lattice tight-binding model in parallel magnetic fields

    Full text link
    Upper critical field parallel to the conducting layer is studied in anisotropic type-II superconductors on square lattices. We assume enough separation of the adjacent layers, for which the orbital pair-breaking effect is suppressed for exactly aligned parallel magnetic field. In particular, we examine the temperature dependence of the critical field H_c(T) of the superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) state, in which the Cooper pairs have non-zero center-of-mass momentum q. In the system with the cylindrically symmetric Fermi-surface, it is known that H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a change of the direction of q in contrast to observations in organic superconductors. It is shown that the kink disappears when the Fermi-surface is anisotropic to some extent, since the direction of q is locked in an optimum direction independent of the temperature.Comment: 5 pages, 5 figures, revtex.sty, submitted to J.Phys.Soc.Jp

    Reduction of Pauli paramagnetic pair-breaking effect in antiferromagnetic superconductors

    Full text link
    Antiferromagnetic superconductors in a magnetic field are studied. We examine a mechanism which significantly reduces the Pauli paramagnetic pair-breaking effect. The mechanism is realized even in the presence of the orbital pair-breaking effect. We illustrate it using a three-dimensional model with an intercalated magnetic subsystem. The upper critical field is calculated for various parameters. It is shown that the upper critical field can reach several times the pure Pauli paramagnetic limit. The possible relevance to the large upper critical field observed in the heavy fermion antiferromagnetic superconductor CePt_3Si discovered recently is briefly discussed. We try to understand the large upper critical field in the compound CePt_3Si and field-induced superconductivity in the compound CePb_3 within a unified framework.Comment: 5 pages, 2 figures, revtex4, minor correction

    Coexistence of Singlet and Triplet Attractive Channels in the Pairing Interactions Mediated by Antiferromagnetic Fluctuations

    Full text link
    We propose a phase diagram of quasi-low-dimensional type II superconductors in parallel magnetic fields, when antiferromagnetic fluctuations contribute to the pairing interactions. We point out that pairing interactions mediated by antiferromagnetic fluctuations necessarily include both singlet channels and triplet channels as attractive interactions. Usually, a singlet pairing is favored at zero field, but a triplet pairing occurs at high fields where the singlet pairing is suppressed by the Pauli paramagnetic pair-breaking effect. As a result, the critical field increases divergently at low temperatures. A possible relation to experimental phase diagrams of a quasi-one-dimensional organic superconductor is briefly discussed. We also discuss a possibility that a triplet superconductivity is observed even at zero field.Comment: 4 pages, 1 figure (Latex, revtex.sty, epsf.sty

    On the Fulde-Ferrell State in Spatially Isotropic Superconductors

    Full text link
    Effects of superconducting fluctuations on the Fulde-Ferrell (FF) state are discussed in a spatially isotropic three-dimensional superconductor under a magnetic field. For this system, Shimahara recently showed that within the phenomenological Ginzburg-Landau theory, the long-range order of the FF state is suppressed by the phase fluctuation of the superconducting order parameter. [H. Shimahara: J. Phys. Soc. Jpn. {\bf 67} (1998) 1872, Physica B {\bf 259-261} (1999) 492] In this letter, we investigate this instability of the FF state against superconducting fluctuations from the microscopic viewpoint, employing the theory developed by Nozi\'eres and Schmitt-Rink in the BCS-BEC crossover field. Besides the absence of the second-order phase transition associated with the FF state, we show that even if the pairing interaction is weak, the shift of the chemical potential from the Fermi energy due to the fluctuations is crucial near the critical magnetic field of the FF state obtained within the mean-field theory.Comment: 11 pages, 1 figur

    Josephson Effect in Fulde-Ferrell-Larkin-Ovchinnikov Superconductors

    Full text link
    Due to the difference in the momenta of the superconducting order parameters, the Josephson current in a Josephson junction between a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor and a conventional BCS superconductor is suppressed. We show that the Josephson current may be recovered by applying a magnetic field in the junction. The field strength and direction at which the supercurrent recovery occurs depend upon the momentum and structure of the order parameter in the FFLO state. Thus the Josephson effect provides an unambiguous way to detect the existence of an FFLO state, and to measure the momentum of the order parameter.Comment: 4 pages with one embedded eps figur

    Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors

    Full text link
    We propose a mechanism by which the paramagnetic pair-breaking effect is largely reduced in superconductors with coexisting antiferromagnetic long- range and short-range orders. The mechanism is an extension of the Jaccarino and Peter mechanism to antiferromagnetic conductors, but the resultant phase diagram is quite different. In order to illustrate the mechanism, we examine a model which consists of mobile electrons and antiferromagnetically correlated localized spins with Kondo coupling between them. It is found that for weak Kondo coupling, the superconductivity occurs over an extraordinarily wide region of the magnetic field including zero field. The critical field exceeds the Chandrasekhar and Clogston limit, but there is no lower limit in contrast to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo coupling, both the low-field superconductivity and a field-induced superconductivity occur. Possibilities in hybrid ruthenate cuprate superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn. Vol.71, No.3 (2002

    Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms

    Full text link
    We examine the isotope effect of superconductivity in systems with coexisting interactions of phonon and nonphonon mechanisms in addition to the direct Coulomb interaction. The interaction mediated by the spin fluctuations is discussed as an example of the nonphonon interaction. Extended formulas for the transition temperature Tc and the isotope-effect coefficient alpha are derived for cases (a) omega_np omega_D, where omega_np is an effective cutoff frequency of the nonphonon interaction that corresponds to the Debye frequency omega_D in the phonon interaction. In case (a), it is found that the nonphonon interaction does not change the condition for the inverse isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of alpha markedly. In particular, it is found that a giant isotope shift occurs when the phonon and nonphonon interactions cancel each other largely. For instance, strong critical spin fluctuations may give rise to the giant isotope effect. In case (b), it is found that the inverse isotope effect occurs only when the nonphonon interaction and the repulsive Coulomb interaction, in total effect, work as repulsive interactions against the superconductivity. We discuss the relevance of the present result to some organic superconductors, such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse isotope effects have been observed, and briefly to high-Tc cuprates, in which giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic correction

    Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems

    Full text link
    We investigate the spin-triplet superconductivity mediated by phonons in quasi-one-dimensional (Q1D) systems with open Fermi surfaces. We obtain the ground state phase diagrams. It is found that spin-triplet superconductivity occurs for weak screening and strong on-site Coulomb interaction, even in the absence of any additional nonphonon pairing interactions. We find that the nodeless spin-triplet state is more favorable than the spin-triplet state with line nodes, for the parameter values of the Q1D superconductors (TMTSF)_2X. We also find that Q1D open Fermi surface, which is the specific feature of this system, plays an essential role in the pairing symmetry. We discuss the compatibility of the present results with the experimental results in these compounds.Comment: 8 pages, 15 figures, with jpsj2.cl

    Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors

    Full text link
    Nonuniform superconducting state due to strong spin magnetism is studied in two-dimensional type-II superconductors near the second order phase transition line between the normal and the superconducting states. The optimum spatial structure of the orderparameter is examined in systems with cylindrical symmetric Fermi surfaces. It is found that states with two-dimensional structures have lower free energies than the traditional one-dimensional solutions, at low temperatures and high magnetic fields. For s-wave pairing, triangular, square, hexagonal states are favored depending on the temperature, while square states are favored at low temperatures for d-wave pairing. In these states, orderparameters have two-dimensional structures such as square and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference

    Fluctuation-Driven First-Order Transition in Pauli-limited d-wave Superconductors

    Full text link
    We study the phase transition between the normal and non-uniform (Fulde-Ferrell-Larkin-Ovchinnikov) superconducting state in quasi two-dimensional d-wave superconductors at finite temperature. We obtain an appropriate Ginzburg-Landau theory for this transition, in which the fluctuation spectrum of the order parameter has a set of minima at non-zero momenta. The momentum shell renormalization group procedure combined with dimensional expansion is then applied to analyze the phase structure of the theory. We find that all fixed points have more than one relevant directions, indicating the transition is of the fluctuation-driven first order type for this universality class.Comment: 5 page
    corecore