278 research outputs found
Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics
We use perturbative Symanzik improvement to create a new staggered-quark
action (HISQ) that has greatly reduced one-loop taste-exchange errors, no
tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading
order in the quark's velocity v/c. We demonstrate with simulations that the
resulting action has taste-exchange interactions that are at least 3--4 times
smaller than the widely used ASQTAD action. We show how to estimate errors due
to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate
with simulations that such errors are no more than 1% when HISQ is used for
light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4
errors also makes HISQ the most accurate discretization currently available for
simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c
mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66,
with full-QCD gluon configurations (from MILC). We obtain a result of~111(5)
MeV which compares well with experiment. We discuss applications of this
formalism to D physics and present our first high-precision results for D_s
mesons.Comment: 21 pages, 8 figures, 5 table
Fast Fits for Lattice QCD Correlators
We illustrate a technique for fitting lattice QCD correlators to sums of
exponentials that is significantly faster than traditional fitting methods ---
10--40 times faster for the realistic examples we present. Our examples are
drawn from a recent analysis of the Upsilon spectrum, and another recent
analysis of the D -> pi semileptonic form factor. For single correlators, we
show how to simplify traditional effective-mass analyses.Comment: 5 pages, 4 figure
The Perfect Quark-Gluon Vertex Function
We evaluate a perfect quark-gluon vertex function for QCD in coordinate space
and truncate it to a short range. We present preliminary results for the
charmonium spectrum using this quasi-perfect action.Comment: 3 pages LaTex, 4 figures, poster presented at LATTICE9
Precise charm to strange mass ratio and light quark masses from full lattice QCD
By using a single formalism to handle charm, strange and light valence quarks
in full lattice QCD for the first time, we are able to determine ratios of
quark masses to 1%. For we obtain 11.85(16), an order of magnitude
more precise than the current PDG average. Combined with 1% determinations of
the charm quark mass now possible this gives
92.4(1.5) MeV. The MILC result for yields = 3.40(7) MeV for the average of and quark masses.Comment: 4 pages, 2 figures. Version accepted by Physical Review Letters.
Changes include modifying the title, using the MILC value for m_s/m_l which
changes slightly the resulting up and down quark masses and their average,
adding some references and making other small adjustments to the text for
space reasons
- …