16 research outputs found

    Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries

    No full text
    In an attempt to achieve lithium-ion batteries with high rate capability, the effect of conducting additives with various shapes and contents on the physical and electrochemical performances was evaluated. Although the density of the cathode decreased upon the addition of the additives, the electrical conductivity and electrochemical performance were greatly improved. The composite cathodes with well-dispersed multi-walled carbon nanotubes (MWCNTs) exhibited excellent high rate capabilities and cyclabilities. In the case of cathode with 8 wt.% of MWCNTs (low density-LD), the highest discharge capacity of 136 mAh/g was obtained at 5 C-rate and capacity retention of 97% for 50 cycles was observed at 1 C-rate of discharge. The cathode with a mixture of 2 wt.% of Super P and 4 wt.% of MWCNTs (LD) also exhibits improved cycle performances. The volume changes in the charge and discharge processes were successfully controlled by the bundles distributed between the host particles.close8

    Effect of MWCNT on the performances of the rounded shape natural graphite as anode material for lithium-ion batteries

    No full text
    Multi-walled carbon nanotube (MWCNT) with bundle-type morphology was introduced as a new functional additive working as a particle connector or an expansion absorber in the anodes of lithium-ion batteries. By controlling the dispersion process, the MWCNT bundles were successfully divided and dispersed between the host particles. The composite anode consisting of rounded shape natural graphite and 2 wt.% of MWCNT exhibited the capacity of 300 mAh g -1 at 3 C rate and excellent cyclability. The well-dispersed MWCNT bundles made it possible to relieve the large strains developed at high discharge C rates and to keep the electrical contact between the host particles during repeated intercalation/deintercalation. This study has also emphasized that when high C-rate applications of lithium-ion batteries are targeted, it is important to get optimum content of MWCNT as well as uniform dispersion of their bundles in the composite anodes.close3
    corecore