18 research outputs found
Optical Sum Rule anomalies in the High-Tc Cuprates
We provide a brief summary of the observed sum rule anomalies in the
high-T cuprate materials. A recent issue has been the impact of a
non-infinite frequency cutoff in the experiment. In the normal state, the
observed anomalously high temperature dependence can be explained as a `cutoff
effect'. The anomalous rise in the optical spectral weight below the
superconducting transition, however, remains as a solid experimental
observation, even with the use of a cutoff frequency.Comment: 4 pages, 2 figures, very brief review of optical sum rule anomal
Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates
Experimental evidence indicates that the superconducting transition in high
cuprates is an 'undressing' transition. Microscopic mechanisms giving
rise to this physics were discussed in the first paper of this series. Here we
discuss the calculation of the single particle Green's function and spectral
function for Hamiltonians describing undressing transitions in the normal and
superconducting states. A single parameter, , describes the strength
of the undressing process and drives the transition to superconductivity. In
the normal state, the spectral function evolves from predominantly incoherent
to partly coherent as the hole concentration increases. In the superconducting
state, the 'normal' Green's function acquires a contribution from the anomalous
Green's function when is non-zero; the resulting contribution to
the spectral function is for hole extraction and for hole
injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along the
direction and their absence along the direction.Comment: figures have been condensed in fewer pages for easier readin
Interplane Transport and Superfluid Density in Layered Superconductors
We report on generic trends in the behavior of the interlayer penetration
depth of several different classes of quasi two-dimensional
superconductors including cuprates, SrRuO, transition metal
dichalcogenides and organic materials of the -series. Analysis
of these trends reveals two distinct patterns in the scaling between the values
of and the magnitude of the DC conductivity: one realized in the
systems with a Fermi liquid (FL) ground state and the other seen in systems
with a marked deviation from the FL response. The latter pattern is found
primarily in under-doped cuprates and indicates a dramatic enhancement (factor
) of the energy scale associated with the formation of
the condensate compared to the data for the FL materials. We discuss
implications of these results for the understanding of pairing in high-
cuprates.Comment: 4 pages, 2 figure
Superconducting Fluctuation investigated by THz Conductivity of LaSrCuO Thin Films
Frequency-dependent terahertz conductivities of LaSrCuO thin
films with various carrier concentrations were investigated. The imaginary part
of the complex conductivity considerably increased from far above a
zero-resistance superconducting transition temperature,
, because of the existence of the fluctuating
superfluid density with a short lifetime. The onset temperature of the
superconducting fluctuation is at most for
underdoped samples, which is consistent with the previously reported analysis
of microwave conductivity. The superconducting fluctuation was not enhanced
under a 0.5 T magnetic field. We also found that the temperature dependence of
the superconducting fluctuation was sensitive to the carrier concentration of
LaSrCuO, which reflects the difference in the nature of the
critical dynamics near the superconducting transition temperature. Our results
suggest that the onset temperature of the Nernst signal is not related to the
superconducting fluctuation we argued in this paper.Comment: J. Phys. Soc. Jpn. in pres
Laser annealing study of PECVD deposited hydrogenated amorphous silicon carbon alloys films
The influence of carbon content on the crystallization process has been investigated for the excimer laser annealed hydrogenated amorphous silicon carbon alloy films deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) technique, using silane methane gas mixture diluted in helium, as well as for the hydrogenated microcrystalline silicon carbon alloy films prepared by PECVD from silane methane gas mixture highly diluted in hydrogen, for comparison. The study demonstrates clearly that the increase in the carbon content prevents the crystallization process in the hydrogen diluted samples while the crystallization process is enhanced in the laser annealing of amorphous samples because of the increase in the absorbed laser energy density that occurs for the amorphous films with the higher carbon content. This, in turn, facilitates the crystallization for the laser annealed samples with higher carbon content, resulting in the formation of SiC crystallites along with Si crystallites
Porous inorganic thin films from bridged silsesquioxane sol-gel precursors
International audienceA sol-gel process was exploited to produce porous inorganic thin films from phenyl-bridged silsesquioxanes. The evolution of both structural and optical properties of the starting hybrid so-gel films were monitored, during synthesis and successive thermal curing steps, by Fourier transform infrared (FT-IR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and spectroscopic ellipsometry (SE). Involved chemical species, structural and chemical modifications were identified when thermal treatments at increasing temperatures in the range of 60-800 degrees C were applied to the hybrid films. The progressive formation of a crosslinked silica network, template elimination and film densification were observed, resulting in completely inorganic porous thin films of low refractive index. The distinctiveness of this system directly comes from the extremely controlled and uniform dispersion of the porogen at a molecular level, which is intrinsic to the bridged silsesquioxane precursor choice. A quantitative porosity analysis was performed by environmental ellipsometric porosimetry (EEP), studying inorganic film optical and mechanical properties under different relative humidity conditions. A transmission electron microscopy (TEM) in-situ characterization of porosity size and distribution confirms the presence of a spatially structured organization of pores of a few nanometers in diameter
Interplay of Order and Disorder in the High-Energy Optical Response of Three-Dimensional Photonic Crystals
21 páginasOpal-like structures, consisting of lattices of dielectrics spheres, are the most commonly studied example of three-dimensional (3D) photonic crystals (PCs). Since they were proposed as new materials to mold the flow of light, they have become an important area of research because of theit technological potential and fundamental interest. Among all fabrication techniques developed up to date to prepare opaline PCs, those based on evaporation-induced self-assembly (EISA) are some of the most frequently used and thoroughly analyzed. The advent and subsequent improvement of fabrication techniques that take advantage of self-organizing properties of dielectric spheres in the micrometer scale have permitted to obtain solid colloidal crystals that exhibit PC properties, whose optical response has been studies in depth in the low-energy range, where the lattice parameter is smaller than the incident wavelength.Peer reviewe