950 research outputs found
A non-symmetric Yang-Baxter Algebra for the Quantum Nonlinear Schr\"odinger Model
We study certain non-symmetric wavefunctions associated to the quantum
nonlinear Schr\"odinger model, introduced by Komori and Hikami using Gutkin's
propagation operator, which involves representations of the degenerate affine
Hecke algebra. We highlight how these functions can be generated using a
vertex-type operator formalism similar to the recursion defining the symmetric
(Bethe) wavefunction in the quantum inverse scattering method. Furthermore,
some of the commutation relations encoded in the Yang-Baxter equation for the
relevant monodromy matrix are generalized to the non-symmetric case.Comment: 31 pages; added some references; minor corrections throughou
Optimizing local protocols implementing nonlocal quantum gates
We present a method of optimizing recently designed protocols for
implementing an arbitrary nonlocal unitary gate acting on a bipartite system.
These protocols use only local operations and classical communication with the
assistance of entanglement, and are deterministic while also being "one-shot",
in that they use only one copy of an entangled resource state. The optimization
is in the sense of minimizing the amount of entanglement used, and it is often
the case that less entanglement is needed than with an alternative protocol
using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546
-Trinomial identities
We obtain connection coefficients between -binomial and -trinomial
coefficients. Using these, one can transform -binomial identities into a
-trinomial identities and back again. To demonstrate the usefulness of this
procedure we rederive some known trinomial identities related to partition
theory and prove many of the conjectures of Berkovich, McCoy and Pearce, which
have recently arisen in their study of the and
perturbations of minimal conformal field theory.Comment: 21 pages, AMSLate
Synchronization of chaotic networks with time-delayed couplings: An analytic study
Networks of nonlinear units with time-delayed couplings can synchronize to a
common chaotic trajectory. Although the delay time may be very large, the units
can synchronize completely without time shift. For networks of coupled
Bernoulli maps, analytic results are derived for the stability of the chaotic
synchronization manifold. For a single delay time, chaos synchronization is
related to the spectral gap of the coupling matrix. For networks with multiple
delay times, analytic results are obtained from the theory of polynomials.
Finally, the analytic results are compared with networks of iterated tent maps
and Lang-Kobayashi equations which imitate the behaviour of networks of
semiconductor lasers
On Free Quotients of Complete Intersection Calabi-Yau Manifolds
In order to find novel examples of non-simply connected Calabi-Yau
threefolds, free quotients of complete intersections in products of projective
spaces are classified by means of a computer search. More precisely, all
automorphisms of the product of projective spaces that descend to a free action
on the Calabi-Yau manifold are identified.Comment: 39 pages, 3 tables, LaTe
Recurrence for discrete time unitary evolutions
We consider quantum dynamical systems specified by a unitary operator U and
an initial state vector \phi. In each step the unitary is followed by a
projective measurement checking whether the system has returned to the initial
state. We call the system recurrent if this eventually happens with probability
one. We show that recurrence is equivalent to the absence of an absolutely
continuous part from the spectral measure of U with respect to \phi. We also
show that in the recurrent case the expected first return time is an integer or
infinite, for which we give a topological interpretation. A key role in our
theory is played by the first arrival amplitudes, which turn out to be the
(complex conjugated) Taylor coefficients of the Schur function of the spectral
measure. On the one hand, this provides a direct dynamical interpretation of
these coefficients; on the other hand it links our definition of first return
times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte
Characterizing Operations Preserving Separability Measures via Linear Preserver Problems
We use classical results from the theory of linear preserver problems to
characterize operators that send the set of pure states with Schmidt rank no
greater than k back into itself, extending known results characterizing
operators that send separable pure states to separable pure states. We also
provide a new proof of an analogous statement in the multipartite setting. We
use these results to develop a bipartite version of a classical result about
the structure of maps that preserve rank-1 operators and then characterize the
isometries for two families of norms that have recently been studied in quantum
information theory. We see in particular that for k at least 2 the operator
norms induced by states with Schmidt rank k are invariant only under local
unitaries, the swap operator and the transpose map. However, in the k = 1 case
there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3
simplified and clarifie
On the multiplicativity of quantum cat maps
The quantum mechanical propagators of the linear automorphisms of the
two-torus (cat maps) determine a projective unitary representation of the theta
group, known as Weil's representation. We prove that there exists an
appropriate choice of phases in the propagators that defines a proper
representation of the theta group. We also give explicit formulae for the
propagators in this representation.Comment: Revised version: proof of the main theorem simplified. 21 page
Clefting in a Pumpkin Balloon
NASA\u27s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. In this paper, we will use th concept of stability to classify equilibrium shapes of fully pressurized/fully deployed strained ball oons
Obstructing extensions of the functor Spec to noncommutative rings
In this paper we study contravariant functors from the category of rings to
the category of sets whose restriction to the full subcategory of commutative
rings is isomorphic to the prime spectrum functor Spec. The main result reveals
a common characteristic of these functors: every such functor assigns the empty
set to M_n(C) for n >= 3. The proof relies, in part, on the Kochen-Specker
Theorem of quantum mechanics. The analogous result for noncommutative
extensions of the Gelfand spectrum functor for C*-algebras is also proved.Comment: 23 pages. To appear in Israel J. Math. Title was changed;
introduction was rewritten; old Section 2 was removed to streamline the
exposition; final section was rewritten to omit an error in the earlier proof
of Theorem 1.
- …