950 research outputs found

    A non-symmetric Yang-Baxter Algebra for the Quantum Nonlinear Schr\"odinger Model

    Get PDF
    We study certain non-symmetric wavefunctions associated to the quantum nonlinear Schr\"odinger model, introduced by Komori and Hikami using Gutkin's propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.Comment: 31 pages; added some references; minor corrections throughou

    Optimizing local protocols implementing nonlocal quantum gates

    Full text link
    We present a method of optimizing recently designed protocols for implementing an arbitrary nonlocal unitary gate acting on a bipartite system. These protocols use only local operations and classical communication with the assistance of entanglement, and are deterministic while also being "one-shot", in that they use only one copy of an entangled resource state. The optimization is in the sense of minimizing the amount of entanglement used, and it is often the case that less entanglement is needed than with an alternative protocol using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546

    qq-Trinomial identities

    Full text link
    We obtain connection coefficients between qq-binomial and qq-trinomial coefficients. Using these, one can transform qq-binomial identities into a qq-trinomial identities and back again. To demonstrate the usefulness of this procedure we rederive some known trinomial identities related to partition theory and prove many of the conjectures of Berkovich, McCoy and Pearce, which have recently arisen in their study of the ϕ2,1\phi_{2,1} and ϕ1,5\phi_{1,5} perturbations of minimal conformal field theory.Comment: 21 pages, AMSLate

    Synchronization of chaotic networks with time-delayed couplings: An analytic study

    Full text link
    Networks of nonlinear units with time-delayed couplings can synchronize to a common chaotic trajectory. Although the delay time may be very large, the units can synchronize completely without time shift. For networks of coupled Bernoulli maps, analytic results are derived for the stability of the chaotic synchronization manifold. For a single delay time, chaos synchronization is related to the spectral gap of the coupling matrix. For networks with multiple delay times, analytic results are obtained from the theory of polynomials. Finally, the analytic results are compared with networks of iterated tent maps and Lang-Kobayashi equations which imitate the behaviour of networks of semiconductor lasers

    On Free Quotients of Complete Intersection Calabi-Yau Manifolds

    Get PDF
    In order to find novel examples of non-simply connected Calabi-Yau threefolds, free quotients of complete intersections in products of projective spaces are classified by means of a computer search. More precisely, all automorphisms of the product of projective spaces that descend to a free action on the Calabi-Yau manifold are identified.Comment: 39 pages, 3 tables, LaTe

    Recurrence for discrete time unitary evolutions

    Full text link
    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    On the multiplicativity of quantum cat maps

    Full text link
    The quantum mechanical propagators of the linear automorphisms of the two-torus (cat maps) determine a projective unitary representation of the theta group, known as Weil's representation. We prove that there exists an appropriate choice of phases in the propagators that defines a proper representation of the theta group. We also give explicit formulae for the propagators in this representation.Comment: Revised version: proof of the main theorem simplified. 21 page

    Clefting in a Pumpkin Balloon

    Get PDF
    NASA\u27s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. In this paper, we will use th concept of stability to classify equilibrium shapes of fully pressurized/fully deployed strained ball oons

    Obstructing extensions of the functor Spec to noncommutative rings

    Full text link
    In this paper we study contravariant functors from the category of rings to the category of sets whose restriction to the full subcategory of commutative rings is isomorphic to the prime spectrum functor Spec. The main result reveals a common characteristic of these functors: every such functor assigns the empty set to M_n(C) for n >= 3. The proof relies, in part, on the Kochen-Specker Theorem of quantum mechanics. The analogous result for noncommutative extensions of the Gelfand spectrum functor for C*-algebras is also proved.Comment: 23 pages. To appear in Israel J. Math. Title was changed; introduction was rewritten; old Section 2 was removed to streamline the exposition; final section was rewritten to omit an error in the earlier proof of Theorem 1.
    corecore