452 research outputs found
High-Order Coupled Cluster Calculations Via Parallel Processing: An Illustration For CaVO
The coupled cluster method (CCM) is a method of quantum many-body theory that
may provide accurate results for the ground-state properties of lattice quantum
spin systems even in the presence of strong frustration and for lattices of
arbitrary spatial dimensionality. Here we present a significant extension of
the method by introducing a new approach that allows an efficient
parallelization of computer codes that carry out ``high-order'' CCM
calculations. We find that we are able to extend such CCM calculations by an
order of magnitude higher than ever before utilized in a high-order CCM
calculation for an antiferromagnet. Furthermore, we use only a relatively
modest number of processors, namely, eight. Such very high-order CCM
calculations are possible {\it only} by using such a parallelized approach. An
illustration of the new approach is presented for the ground-state properties
of a highly frustrated two-dimensional magnetic material, CaVO. Our
best results for the ground-state energy and sublattice magnetization for the
pure nearest-neighbor model are given by and ,
respectively, and we predict that there is no N\'eel ordering in the region
. These results are shown to be in excellent agreement
with the best results of other approximate methods.Comment: 4 page
Experimental evolution of immunological specificity
Innate immune memory (i.e., immune priming) is found in many invertebrates. In some cases, immune priming provides protection against infection only when the same bacteria are used for priming and challenge; that is, priming can be specific. However, we still know little about the conditions favoring the evolution of immunological specificity. We present evidence that immune priming and its specificity can rapidly evolve in an insect through experimental selection by repeated bacterial exposure. Our populations evolved treatment-specific differences in expression profiles of immune, metabolic, and transcription-regulatory genes, pointing to similar mechanisms acting in vertebrate trained immunity. Hence, immune memory combines deeply rooted resemblances across systems with enormous evolutionary plasticity.Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum. Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis. After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes
Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1
Mitogen-activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular-signal-regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three-tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain-mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63-linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5-ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3-ERK5-dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5-MAPK module and human muscle cell differentiation
Spin-1/2 J1-J2 model on the body-centered cubic lattice
Using exact diagonalization (ED) and linear spin wave theory (LSWT) we study
the influence of frustration and quantum fluctuations on the magnetic ordering
in the ground state of the spin-1/2 J1-J2 Heisenberg antiferromagnet (J1-J2
model) on the body-centered cubic (bcc) lattice. Contrary to the J1-J2 model on
the square lattice, we find for the bcc lattice that frustration and quantum
fluctuations do not lead to a quantum disordered phase for strong frustration.
The results of both approaches (ED, LSWT) suggest a first order transition at
J2/J1 0.7 from the two-sublattice Neel phase at low J2 to a collinear
phase at large J2.Comment: 6.1 pages 7 figure
Effects of Single-site Anisotropy on Mixed Diamond Chains with Spins 1 and 1/2
Effects of single-site anisotropy on mixed diamond chains with spins 1 and
1/2 are investigated in the ground states and at finite temperatures. There are
phases where the ground state is a spin cluster solid, i.e., an array of
uncorrelated spin-1 clusters separated by singlet dimers. The ground state is
nonmagnetic for the easy-plane anisotropy, while it is paramagnetic for the
easy-axis anisotropy. Also, there are the N\'eel, Haldane, and large-
phases, where the ground state is a single spin cluster of infinite size and
the system is equivalent to the spin-1 Heisenberg chain with alternating
anisotropy. The longitudinal and transverse susceptibilities and entropy are
calculated at finite temperatures in the spin-cluster-solid phases. Their
low-temperature behaviors are sensitive to anisotropy.Comment: 8 pages, 4 figure
Ferrimagnetism of the Heisenberg Models on the Quasi-One-Dimensional Kagome Strip Lattices
We study the ground-state properties of the S=1/2 Heisenberg models on the
quasi-onedimensional kagome strip lattices by the exact diagonalization and
density matrix renormalization group methods. The models with two different
strip widths share the same lattice structure in their inner part with the
spatially anisotropic two-dimensional kagome lattice. When there is no magnetic
frustration, the well-known Lieb-Mattis ferrimagnetic state is realized in both
models. When the strength of magnetic frustration is increased, on the other
hand, the Lieb-Mattis-type ferrimagnetism is collapsed. We find that there
exists a non-Lieb-Mattis ferrimagnetic state between the Lieb-Mattis
ferrimagnetic state and the nonmagnetic ground state. The local magnetization
clearly shows an incommensurate modulation with long-distance periodicity in
the non-Lieb-Mattis ferrimagnetic state. The intermediate non-Lieb-Mattis
ferrimagnetic state occurs irrespective of strip width, which suggests that the
intermediate phase of the two-dimensional kagome lattice is also the
non-Lieb-Mattis-type ferrimagnetism.Comment: 9pages, 11figures, accepted for publication in J. Phys. Soc. Jp
Magnetization curve of the kagome-strip-lattice antiferromagnet
We study the magnetization curve of the Heisenberg model on the
quasi-one-dimensional kagome-strip lattice that shares the same lattice
structure in the inner part with the two-dimensional kagome lattice. Our
numerical calculations based on the density matrix renormalization group method
reveal that the system shows several magnetization plateaus between zero
magnetization and the saturated one; we find the presence of the magnetic
plateaus with the n=7 height of the saturation for n =1,2,3,4,5 and 6 in the S
=1/2 case, whereas we detect only the magnetic plateaus of n =1,3,5 and 6 in
the S =1 case. In the cases of n =2,4 and 6 for the S=1/2 system, the
Oshikawa-Yamanaka-Affleck condition suggests the occurrence of the
translational symmetry breaking (TSB). We numerically confirm this non-trivial
TSB in our results of local magnetizations. We have also found that the
macroscopic jump appears near the saturation field irrespective of the spin
amplitude as well as the two-dimensional kagome model.Comment: 6pages, 3figures, accepted for publication in Journal of Low
Temperature Physic
Localized-magnon states in strongly frustrated quantum spin lattices
Recent developments concerning localized-magnon eigenstates in strongly
frustrated spin lattices and their effect on the low-temperature physics of
these systems in high magnetic fields are reviewed. After illustrating the
construction and the properties of localized-magnon states we describe the
plateau and the jump in the magnetization process caused by these states.
Considering appropriate lattice deformations fitting to the localized magnons
we discuss a spin-Peierls instability in high magnetic fields related to these
states. Last but not least we consider the degeneracy of the localized-magnon
eigenstates and the related thermodynamics in high magnetic fields. In
particular, we discuss the low-temperature maximum in the isothermal entropy
versus field curve and the resulting enhanced magnetocaloric effect, which
allows efficient magnetic cooling from quite large temperatures down to very
low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low
Temperature Physics " dedicated to the 70-th anniversary of creation of
concept "antiferromagnetism" in physics of magnetis
Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2
Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density
approximation (LDA) are presented. The investigated compound is similar to the
antiferromagnetic parent compounds of cuprate superconductors but contains
additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found
with two bands crossing the Fermi surface (FS). These bands are built mainly
from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding
(TB) model has been parameterized. All orbitals can be subdivided in two sets
corresponding to the A- and B-subsystems, respectively, the coupling between
which is found to be small. To describe the experimentally observed
antiferromagnetic insulating state, we propose an extended Hubbard model with
the derived TB parameters and local correlation terms characteristic for
cuprates. Using the derived parameter set we calculate the exchange integrals
for the Cu_3O_4 plane. The results are in quite reasonable agreement with the
experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure
- …