419 research outputs found

    A Study of Wind Energy Potential in India

    Get PDF
    There is huge activity in wind power, pan-India with the installed capacity increasing to 10,000 MW. India today has the fifth largest installed capacity of wind power in the world with 11087MW installed capacity and potential for on-shore capabilities of 65000MW. However the plant load factor (PLF) in wind power generation is very low, often in the single digits. The increase in interest in wind energy is due to investment subsidies, tax holidays, and government action towards renewable energy playing a big part in nation’s energy system. There is a need to generate environment friendly power that not only raises energy efficiency and is sustainable too. The time has come for moving to generation based subsidies and understanding the drawbacks associated with wind power in India. The capital cost of wind power is third higher than conventional thermal power; further electrical problems like voltage flicker and variable frequency affect the implementation of wind farm. However advances in technologies such as offshore construction of wind turbines, advanced control methodologies, and simulation of wind energy affecting overall grid performance are making a case for wind energy

    Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Full text link
    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angular variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Land\'{e} gg-factor, PMA constant, and effective magnetization are found to be 2.1, 2×105\times10^{5} erg/cm3^{3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α\alpha) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α\alpha is found to be 0.006 at 10 GHz and it increases with decreasing precessional frequency.Comment: 5 Pages, 6 Figures, Regular Submissio

    Variance-Range Function Analysis of X-Ray Line Profile Broadening in Ramie Cellulose

    Get PDF

    Laser Optical Simulation of Diffraction from Distorted Lattices

    Get PDF

    High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler-Poisson System in the Quasineutral Limit

    Full text link
    In this paper, the design and analysis of high order accurate IMEX finite volume schemes for the compressible Euler-Poisson (EP) equations in the quasineutral limit is presented. As the quasineutral limit is singular for the governing equations, the time discretisation is tantamount to achieving an accurate numerical method. To this end, the EP system is viewed as a differential algebraic equation system (DAEs) via the method of lines. As a consequence of this vantage point, high order linearly semi-implicit (SI) time discretisation are realised by employing a novel combination of the direct approach used for implicit discretisation of DAEs and, two different classes of IMEX-RK schemes: the additive and the multiplicative. For both the time discretisation strategies, in order to account for rapid plasma oscillations in quasineutral regimes, the nonlinear Euler fluxes are split into two different combinations of stiff and non-stiff components. The high order scheme resulting from the additive approach is designated as a classical scheme while the one generated by the multiplicative approach possesses the asymptotic preserving (AP) property. Time discretisations for the classical and the AP schemes are performed by standard IMEX-RK and SI-IMEX-RK methods, respectively so that the stiff terms are treated implicitly and the non-stiff ones explicitly. In order to discretise in space a Rusanov-type central flux is used for the non-stiff part, and simple central differencing for the stiff part. AP property is also established for the space-time fully-discrete scheme obtained using the multiplicative approach. Results of numerical experiments are presented, which confirm that the high order schemes based on the SI-IMEX-RK time discretisation achieve uniform second order convergence with respect to the Debye length and are AP in the quasineutral limit

    'Template-free' hierarchical MoS<inf>2</inf>foam as a sustainable 'green' scavenger of heavy metals and bacteria in point of use water purification

    Full text link
    Molybdenum disulfide (MoS2), with its unique optical and electrical properties, has been explored for a variety of applications in the recent past. Still, its capabilities in point-of-use heavy metal ion removal remain to be explored. Herein, for the first time using a facile approach, we fabricated three-dimensional (3D) MoS2 foam from exfoliated single to few-layered MoS2 sheets for the selective exclusion of heavy metals and stringent bactericidal response. This foam was able to exclude 99.9% of Pb(ii) and 98.7% of As(iii) instantaneously and reduced more than 98% of bacteria E. coli. Moreover, the foam exhibits selective toxicity towards bacterial cells while showing no observable toxicity towards mammalian cells. The foam can be recycled and reused for at least five cycles under accelerated conditions and thus can be used for a promising non-cytotoxic, facile, and environmentally benign process for inline water remediation to remove heavy metal ions from the feed and as a potential antibacterial agent
    corecore