419 research outputs found
A Study of Wind Energy Potential in India
There is huge activity in wind power, pan-India with the installed capacity increasing to 10,000 MW. India today has the fifth largest installed capacity of wind power in the world with 11087MW installed capacity and potential for on-shore capabilities of 65000MW. However the plant load factor (PLF) in wind power generation is very low, often in the single digits. The increase in interest in wind energy is due to investment subsidies, tax holidays, and government action towards renewable energy playing a big part in nation’s energy system. There is a need to generate environment friendly power that not only raises energy efficiency and is sustainable too. The time has come for moving to generation based subsidies and understanding the drawbacks associated with wind power in India. The capital cost of wind power is third higher than conventional thermal power; further electrical problems like voltage flicker and variable frequency affect the implementation of wind farm. However advances in technologies such as offshore construction of wind turbines, advanced control methodologies, and simulation of wind energy affecting overall grid performance are making a case for wind energy
Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure
Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key
factors for the free layer magnetization switching by spin transfer torque
technique in magnetic tunnel junction devices. The magnetization precessional
dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure
was explored in broad band frequency range by employing micro-strip
ferromagnetic resonance technique. The polar angular variation of resonance
field and linewidth at different frequencies have been analyzed numerically
using Landau-Lifshitz-Gilbert equation by taking into account the total free
energy density of the film. The numerically estimated parameters Land\'{e}
-factor, PMA constant, and effective magnetization are found to be 2.1,
2 erg/cm and 7145 Oe, respectively. The frequency
dependence of Gilbert damping parameter () is evaluated by considering
both intrinsic and extrinsic effects into the total linewidth analysis. The
value of is found to be 0.006 at 10 GHz and it increases with
decreasing precessional frequency.Comment: 5 Pages, 6 Figures, Regular Submissio
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler-Poisson System in the Quasineutral Limit
In this paper, the design and analysis of high order accurate IMEX finite
volume schemes for the compressible Euler-Poisson (EP) equations in the
quasineutral limit is presented. As the quasineutral limit is singular for the
governing equations, the time discretisation is tantamount to achieving an
accurate numerical method. To this end, the EP system is viewed as a
differential algebraic equation system (DAEs) via the method of lines. As a
consequence of this vantage point, high order linearly semi-implicit (SI) time
discretisation are realised by employing a novel combination of the direct
approach used for implicit discretisation of DAEs and, two different classes of
IMEX-RK schemes: the additive and the multiplicative. For both the time
discretisation strategies, in order to account for rapid plasma oscillations in
quasineutral regimes, the nonlinear Euler fluxes are split into two different
combinations of stiff and non-stiff components. The high order scheme resulting
from the additive approach is designated as a classical scheme while the one
generated by the multiplicative approach possesses the asymptotic preserving
(AP) property. Time discretisations for the classical and the AP schemes are
performed by standard IMEX-RK and SI-IMEX-RK methods, respectively so that the
stiff terms are treated implicitly and the non-stiff ones explicitly. In order
to discretise in space a Rusanov-type central flux is used for the non-stiff
part, and simple central differencing for the stiff part. AP property is also
established for the space-time fully-discrete scheme obtained using the
multiplicative approach. Results of numerical experiments are presented, which
confirm that the high order schemes based on the SI-IMEX-RK time discretisation
achieve uniform second order convergence with respect to the Debye length and
are AP in the quasineutral limit
'Template-free' hierarchical MoS<inf>2</inf>foam as a sustainable 'green' scavenger of heavy metals and bacteria in point of use water purification
Molybdenum disulfide (MoS2), with its unique optical and electrical properties, has been explored for a variety of applications in the recent past. Still, its capabilities in point-of-use heavy metal ion removal remain to be explored. Herein, for the first time using a facile approach, we fabricated three-dimensional (3D) MoS2 foam from exfoliated single to few-layered MoS2 sheets for the selective exclusion of heavy metals and stringent bactericidal response. This foam was able to exclude 99.9% of Pb(ii) and 98.7% of As(iii) instantaneously and reduced more than 98% of bacteria E. coli. Moreover, the foam exhibits selective toxicity towards bacterial cells while showing no observable toxicity towards mammalian cells. The foam can be recycled and reused for at least five cycles under accelerated conditions and thus can be used for a promising non-cytotoxic, facile, and environmentally benign process for inline water remediation to remove heavy metal ions from the feed and as a potential antibacterial agent
- …