13 research outputs found

    Effect of titanium tetrafluoride and amine fluoride treatment combined with carbon dioxide laser irradiation on enamel and dentin erosion

    Full text link
    OBJECTIVE: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. METHODS: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). RESULTS: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. CONCLUSION: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion

    Effect of pH of amine fluoride containing toothpastes on enamel remineralization in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the important factors of the demineralization and remineralization equilibrium of enamel is the pH of the surrounding solutions. Effort has been laid in the formulation of different fluoride compounds and the fluoride content in toothpastes but much less is known about the influence of the pH of the toothpastes on their effectiveness. It was therefore the aim of this study to investigate the influence of different pH levels on enamel remineralization in an in vitro experiment using polarization light microscopy and EDX quantitative element analysis.</p> <p>Methods</p> <p>A 5 脳 5 mm window on the enamel surface of 40 caries free extracted human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 8 groups and the lower half of the window was covered with varnish serving as control. Each group was then immersed in toothpaste slurry containing amine fluoride (1400 ppm) at pH 4.1, 4.5, 5.1 and 6.9 or control toothpaste slurry without fluoride at pH 4.3, 4.7, 5.3 and 7.0. Serial sections were cut through the lesions and investigated with polarization light microscopy and quantitative EDX element analysis.</p> <p>Results</p> <p>The PLM results showed a decreased porous volume of the body of the lesion after incubation with fluoridated toothpaste at pH 4.53 and 5.16. No differences between the experimental window and the control window were found in the other groups. The quantitative element analysis showed no differences in the element content of any of the groups.</p> <p>Conclusion</p> <p>From the results it can be concluded that slightly acidified fluoridated dentifrices may have a certain positive effect on enamel remineralization.</p

    Effect of fluoride toothpastes on enamel demineralization

    Get PDF
    BACKGROUND: It was the aim of this study to investigate the effect of four different toothpastes with differing fluoride compounds on enamel remineralization. METHODS: A 3 脳 3 mm window on the enamel surface of 90 human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 6 groups and the lower half of the window was covered with varnish serving as control. The teeth were immersed in a toothpaste slurry containing: placebo tooth paste (group 1); remineralization solution (group 2); Elmex Anticaries (group 3); Elmex Sensitive (group 4); Blend-a-med Complete (group 5) and Colgate GRF (group 6). Ten teeth of each group were used for the determination of the F(- )content in the superficial enamel layer and acid solubility of enamel expressed in soluble phosphorus. Of 6 teeth of each group serial sections were cut and investigated with polarization light microscopy (PLM) and quantitative energy dispersive X-ray analysis (EDX). RESULTS: The PLM results showed an increased remineralization of the lesion body in the Elmex Anticaries, Elmex Sensitive and Colgate GRF group but not in the Blend-a-med group. A statistically significant higher Ca content was found in the Elmex Anticaries group. The fluoride content in the superficial enamel layer was significantly increased in both Elmex groups and the Blend-a-med group. Phosphorus solubility was significantly decreased in both Elmex groups and the Blend-a-med group. CONCLUSION: It can be concluded that amine fluoride compounds in toothpastes result in a clearly marked remineralization of caries like enamel lesions followed by sodium fluoride and sodium monofluorophosphate formulations

    Transparent CaF 2

    No full text
    corecore