4,520 research outputs found

    Acute effects of inspiratory pressure threshold loading upon airway resistance in people with asthma

    Get PDF
    This is the post-print version of the final paper published in Respiratory Physiology & Neurobiology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Large inspiratory pressures may impart stretch to airway smooth muscle and modify the response to deep inspiration (DI) in asthmatics. Respiratory system resistance (Rrs) was assessed in response to 5 inspiratory manoeuvres using the forced oscillation technique: (a) single unloaded DI; (b) single DI at 25 cmH2O; (c) single DI at 50% maximum inspiratory mouth pressure [MIP]; (d) 30 DIs at 50% MIP; and (e) 30 DIs at 50% MIP with maintenance of normocapnia. Rrs increased after the unloaded DI and the DI at 25 cmH2O but not after a DI at 50% MIP (3.6 ± 1.6 hPa L s−1 vs. 3.6 ± 1.5 hPa L s−1; p = 0.95), 30 DIs at 50% MIP (3.9 ± 1.5 hPa L s−1 vs. 4.2 ± 2.0 hPa L s−1; p = 0.16) or 30 DIs at 50% MIP under normocapnic conditions (3.9 ± 1.5 hPa L s−1 vs. 3.9 ± 1.5 hPa L s−1; p = 0.55). Increases in Rrs in response to DI were attenuated after single and multiple loaded breaths at 50% MIP

    X-ray Observations of Distant Optically Selected Cluster

    Get PDF
    We have measured fluxes or flux limits for 31 of the 79 cluster candidates in the Palomar Distant Cluster Survey (PDCS) using archival ROSAT/PSPC pointed observations. Our X-ray survey reaches a flux limit of ≃3×10−14\simeq 3 \times 10^{-14} erg s−1^{-1} cm−2^{-2} (0.4 - 2.0 keV), which corresponds to luminosities of Lx≃5×1043L_x\simeq 5 \times 10^{43} erg s−1^{-1} (HoH_o = 50 km s−1^{-1} Mpc−1^{-1}, qoq_o = 1/2{1/2}), if we assume the PDCS estimated redshifts. Of the 31 cluster candidates, we detect six at a signal-to-noise greater than three. We estimate that 2.9−1.4+3.32.9^{+3.3}_{-1.4} (90% confidence limits) of these six detections are a result of X-ray emission from objects unrelated to the PDCS cluster candidates. The net surface density of X-ray emitting cluster candidates in our survey, 1.71−2.19+0.911.71^{+0.91}_{-2.19} clusters deg−2^{-2}, agrees with that of other, X-ray selected, surveys. It is possible, given the large error on our contamination rate, that we have not detected X-ray emission from any of our observed PDCS cluster candidates. We find no statistically significant difference between the X-ray luminosities of PDCS cluster candidates and those of Abell clusters of similar optical richness. This suggests that the PDCS contains objects at high redshift similar to the low redshift clusters in the Abell catalogs. We show that the PDCS cluster candidates are not bright X-ray sources, the average luminosity of the six detected candidates is only Lxˉ=0.9×1044\bar{L_x}=0.9\times10^{44} erg s−1^{-1} (0.4-2.0 keV). This finding is in agreement with previous X-ray studies of high redshift, optically selected, rich clusters of galaxies.Comment: 19 pages, LaTeX with AAS Preprint Macros (v. 4), 3 embedded postscript figures, 3 Seperate Tables using aj_pt4.sty, Accepted by the Astronomical Journal for November 199

    Acute cardiorespiratory responses to inspiratory pressure threshold loading

    Get PDF
    This is a non-final version of an article (under the working title "Acute cardiovascular and ventilatory responses to inspiratory pressure threshold loading") published in final form in Medicine & Science in Sports & Exercise, 42(9), 1696-1703, 2010 .Purpose: We tested the acute responses to differing pressure threshold inspiratory loading intensities in well-trained rowers. The purpose of this study was to evaluate 1) how the magnitude of inspiratory pressure threshold loading influences repetition maximum (RM), tidal volume (VT), and external work undertaken by the inspiratory muscle; and 2) whether the inspiratory muscle metaboreflex is activated during acute inspiratory pressure threshold loading. Methods: Eight males participated in seven trials. Baseline measurements of maximal inspiratory pressure (PImax), resting tidal volume (VT), and forced vital capacity (FVC) were made. During the remaining sessions, participants undertook a series of resistive inspiratory breathing tasks at loads corresponding to 50%, 60%, 70%, 80%, and 90% of PImax using a pressure threshold inspiratory muscle trainer. The number of repetitions completed at each load, VT, heart rate (fc), and measures of arterial blood pressure was assessed continuously during each trial. Results: A standardized cutoff of 10% FVC was used to define the RM, which decreased as loading intensity increased (P < 0.05). This response was nonlinear, with an abrupt decrease in RM occurring at loads ≥70% of PImax. The most commonly used inspiratory muscle training regimen of 30RM corresponded to 62.5% ± 4.6% of PImax and also resulted in the highest external work output. Tidal volume (VT) decreased significantly over time at 60%, 70%, and 80% of PImax (P < 0.05), as did the amount of external work completed (P<0.05). Conclusions: Although all loads elicited a sustained increase in fc, only the 60% load elicited a sustained rise in mean arterial blood pressure (P = 0.016), diastolic blood pressure (P = 0.015), and systolic blood pressure (P = 0.002), providing evidence for a metaboreflex response at this load
    • …
    corecore