1,652 research outputs found

    Participatory analysis for adaptation to climate change in Mediterranean agricultural systems: possible choices in process design (versão Pre Print)

    Get PDF
    There is an increasing call for local measures to adapt to climate change, based on foresight analyses in collaboration with actors. However, such analyses involve many challenges, particularly because the actors concerned may not consider climate change to be an urgent concern. This paper examines the methodological choices made by three research teams in the design and implementation of participatory foresight analyses to explore agricultural and water management options for adaptation to climate change. Case studies were conducted in coastal areas of France, Morocco, and Portugal where the groundwater is intensively used for irrigation, the aquifers are at risk or are currently overexploited, and a serious agricultural crisis is underway. When designing the participatory processes, the researchers had to address four main issues: whether to avoid or prepare dialogue between actors whose relations may be limited or tense; how to select participants and get them involved; how to facilitate discussion of issues that the actors may not initially consider to be of great concern; and finally, how to design and use scenarios. In each case, most of the invited actors responded and met to discuss and evaluate a series of scenarios. Strategies were discussed at different levels, from farming practices to aquifer management. It was shown that such participatory analyses can be implemented in situations which may initially appear to be unfavourable. This was made possible by the flexibility in the methodological choices, in particular the possibility of framing the climate change issue in a broader agenda for discussion with the actors

    Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis

    Get PDF
    Selection of optimal quality embryos for in vitro fertilization (IVF) transfer is critical to successful live birth outcomes. Currently, embryos are chosen based on subjective assessment of morphologic developmental maturity. A non-invasive means to quantitatively measure an embryo's developmental maturity would reduce the variability introduced by the current standard. We present a method that exploits the scaling electrical properties of pre-transfer embryos to quantitatively discern embryo developmental maturity using light-induced dielectrophoresis (DEP). We show that an embryo's DEP response is highly correlated with its developmental stage. Uniquely, this technique allows one to select, in sequence and under blinded conditions, the most developmentally mature embryos among a mixed cohort of morphologically indistinguishable embryos cultured in optimized and sub-optimal culture media. Following assay, embryos continue to develop normally in vitro. Light-induced dielectrophoresis provides a non-invasive, quantitative, and reproducible means to select embryos for applications including IVF transfer and embryonic stem cell harvest

    Olfactory memory is enhanced in mice exposed to extremely lowfrequency electromagnetic fields via Wnt/\u3b2-catenin dependent modulation of subventricular zone neurogenesis.

    Get PDF
    Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50\u2009Hz; 3.5\u2009h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target \u3b2-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF\u2019s effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/\u3b2-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function

    Inter-basin transfers as a supply option: the end of an era?

    Get PDF
    International audienceThis chapter discusses the evolving role of interbasin transfers (IBT) in urban water management. After providing an historical overview of IBT development, the chapter describes how IBTs are challenged by a change in the technological and socio-economic context. The emergence of alternative technologies, such as desalination, wastewater reclamation and reuse, or managed artificial groundwater recharge is reducing the attractiveness of IBTs. Water utilities are also becoming increasingly aware that water conservation programs can save volumes of water at a much cheaper cost than IBT. Various international examples are used to show that IBTs trigger increasing concerns from communities involved or affected, in particular related to the environmental impact on donor and receiving river basins, the economic impact on donor regions, the impact on local cultures and livelihoods, how costs and benefits are distributed (social justice), and issues related to public participation. The chapter concludes by looking ahead at new and more efficient uses of existing IBTs. As conjunctive use management approaches gain support, IBTs will be operated in conjunction with aquifer storage and recovery schemes. They will probably also support the development of emerging water markets, in particular during drought years

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    A Prospective Study to Establish a New-Onset Diabetes Cohort: From the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer

    Get PDF
    The National Cancer Institute and the National Institute for Diabetes and Digestive and Kidney Diseases initiated the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC) in 2015 (the CPDPC's origin, structure, governance, and research objectives are described in another article in this journal). One of the key objectives of CPDPC is to assemble a cohort of 10,000 subjects 50 years or older with new-onset diabetes, called the NOD cohort. Using a define, enrich, and find early detection approach, the aims of the NOD study are to (a) estimate the 3-year probability of pancreatic ductal adenocarcinoma (PDAC) in NOD (define), (b) establish a biobank of clinically annotated biospecimens from presymptomatic PDAC and control new-onset type 2 diabetes mellitus subjects, (c) conduct phase 3 validation studies of promising biomarkers for identification of incident PDAC in NOD patients (enrich), and (d) provide a platform for development of a future interventional screening protocol for early detection of PDAC in patients with NOD that incorporates imaging studies and/or clinical algorithms (find). It is expected that 85 to 100 incidences of PDAC will be diagnosed during the study period in this cohort of 10,000 patients

    Evaluation of a Mixed Meal Test for Diagnosis and Characterization of PancrEaTogEniC DiabeTes Secondary to Pancreatic Cancer and Chronic Pancreatitis: Rationale and Methodology for the DETECT Study From the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer

    Get PDF
    Pancreatogenic diabetes mellitus is most commonly the result of chronic pancreatitis but can also occur secondary to pancreatic cancer. The early identification of pancreatogenic diabetes and distinction from the more prevalent type 2 diabetes are clinically significant; however, currently, there is no validated method to differentiate these diabetes subtypes. We describe a study, "Evaluation of a Mixed Meal Test for Diagnosis and Characterization of PancrEaTogEniC DiabeTes Secondary to Pancreatic Cancer and Chronic Pancreatitis: the DETECT study," that seeks to address this knowledge gap. The DETECT study is a multicenter study that will examine differences in hormone and glucose excursions after a mixed meal test. The study will also create a biorepository that will be used to evaluate novel diagnostic biomarkers for differentiating these diabetes subtypes

    Plasma BDNF levels following transcranial direct current stimulation allow prediction of synaptic plasticity and memory deficits in 3 7Tg-AD mice.

    Get PDF
    Early diagnosis of Alzheimer\u2019s disease (AD) supposedly increases the effectiveness of therapeutic interventions. However, presently available diagnostic procedures are either invasive or require complex and expensive technologies, which cannot be applied at a larger scale to screen populations at risk of AD.We were looking for a biomarker allowing to unveil a dysfunction of molecular mechanisms, which underly synaptic plasticity and memory, before the AD phenotype is manifested and investigated the effects of transcranial direct current stimulation (tDCS) in 3 x Tg-AD mice, an experimental model of AD which does not exhibit any long-term potentiation (LTP) and memory deficits at the age of 3 months (3 x Tg-AD-3M). Our results demonstrated that tDCS differentially affected 3 x Tg-AD-3M and age-matched wild-type (WT) mice. While tDCS increased LTP at CA3-CA1 synapses and memory in WT mice, it failed to elicit these effects in 3 x Tg-AD-3M mice. Remarkably, 3 x Tg-AD-3M mice did not show the tDCS-dependent increases in pCREBSer133 and pCaMKIIThr286, which were found in WT mice. Of relevance, tDCS induced a significant increase of plasma BDNF levels in WT mice, which was not found in 3 x Tg-AD-3M mice. Collectively, our results showed that plasticity mechanisms are resistant to tDCS effects in the pre-AD stage. In particular, the lack of BDNF responsiveness to tDCS in 3 x Tg-AD-3M mice suggests that combining tDCS with dosages of plasma BDNF levels may provide an easy-todetect and low-cost biomarker of covert impairment of synaptic plasticity mechanisms underlying memory, which could be clinically applicable. Testing proposed here might be useful to identify AD in its preclinical stage, allowing timely and, hopefully, more effective disease-modifying interventions

    Biomolecular Filters for Improved Separation of Output Signals in Enzyme Logic Systems Applied to Biomedical Analysis

    Full text link
    Biomolecular logic systems processing biochemical input signals and producing "digital" outputs in the form of YES/NO were developed for analysis of physiological conditions characteristic of liver injury, soft tissue injury and abdominal trauma. Injury biomarkers were used as input signals for activating the logic systems. Their normal physiological concentrations were defined as logic-0 level, while their pathologically elevated concentrations were defined as logic-1 values. Since the input concentrations applied as logic 0 and 1 values were not sufficiently different, the output signals being at low and high values (0, 1 outputs) were separated with a short gap making their discrimination difficult. Coupled enzymatic reactions functioning as a biomolecular signal processing system with a built-in filter property were developed. The filter process involves a partial back-conversion of the optical-output-signal-yielding product, but only at its low concentrations, thus allowing the proper discrimination between 0 and 1 output values

    A Reduced Pancreatic Polypeptide Response is Associated With New-onset Pancreatogenic Diabetes Versus Type 2 Diabetes

    Get PDF
    PURPOSE: Pancreatogenic diabetes refers to diabetes mellitus (DM) that develops in the setting of a disease of the exocrine pancreas, including pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). We sought to evaluate whether a blunted nutrient response of pancreatic polypeptide (PP) can differentiate these DM subtypes from type 2 DM (T2DM). METHODS: Subjects with new-onset DM (\u3c3 \u3eyears\u27 duration) in the setting of PDAC (PDAC-DM, n = 28), CP (CP-DM, n = 38), or T2DM (n = 99) completed a standardized mixed meal tolerance test, then serum PP concentrations were subsequently measured at a central laboratory. Two-way comparisons of PP concentrations between groups were performed using Wilcoxon rank-sum test and analysis of covariance while adjusting for age, sex, and body mass index. RESULTS: The fasting PP concentration was lower in both the PDAC-DM and CP-DM groups than in the T2DM group (P = 0.03 and CONCLUSIONS: Fasting PP concentrations and the response to meal stimulation are reduced in new-onset DM associated with PDAC or CP compared with T2DM. These findings support further investigations into the use of PP concentrations to characterize pancreatogenic DM and to understand the pathophysiological role in exocrine pancreatic diseases (NCT03460769)
    • …
    corecore