199 research outputs found

    CMB Anisotropies Reveal Quantized Gravity

    Full text link
    A novel primordial spectrum with a dynamical scale of quantum gravity origin is proposed to explain the sharp fall off of the angular power spectra at low multipoles in the COBE and WMAP observations. The spectrum is derived from quantum fluctuations of the scalar curvature in a renormalizable model of induced gravity. This model describes the very early universe by the conformal field fluctuating about an inflationary background with the expansion time constant of order of the Planck mass.Comment: 12 pages, 2 figure

    A new duality transformation for fourth-order gravity

    Get PDF
    We prove that for non-linear L = L(R), the Lagrangians L and \hat L give conformally equivalent fourth-order field equations being dual to each other. The proof represents a new application of the fact that the operator is conformally invariant.Comment: 11 pages, LaTeX, no figures. Gen. Relat. Grav. in prin

    Higher Dimensional Schwinger-like Anomalous Effective Action

    Get PDF
    We construct explicit form of the anomalous effective action, in arbitrary even dimension, for Abelian vector and axial gauge fields coupled to Dirac fermions. It turns out to be a surprisingly simple extension of 2D Schwinger model effective action.Comment: 7 pages, no figures, ReVTeX, to appear in Phys.Rev.

    Vertex Operators in 4D Quantum Gravity Formulated as CFT

    Full text link
    We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the ultraviolet limit, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. In this paper, we construct gravitational vertex operators such as the Ricci scalar, defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct sign. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator as in the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation

    The tetralogy of Birkhoff theorems

    Full text link
    We classify the existent Birkhoff-type theorems into four classes: First, in field theory, the theorem states the absence of helicity 0- and spin 0-parts of the gravitational field. Second, in relativistic astrophysics, it is the statement that the gravitational far-field of a spherically symmetric star carries, apart from its mass, no information about the star; therefore, a radially oscillating star has a static gravitational far-field. Third, in mathematical physics, Birkhoff's theorem reads: up to singular exceptions of measure zero, the spherically symmetric solutions of Einstein's vacuum field equation with Lambda = 0 can be expressed by the Schwarzschild metric; for Lambda unequal 0, it is the Schwarzschild-de Sitter metric instead. Fourth, in differential geometry, any statement of the type: every member of a family of pseudo-Riemannian space-times has more isometries than expected from the original metric ansatz, carries the name Birkhoff-type theorem. Within the fourth of these classes we present some new results with further values of dimension and signature of the related spaces; including them are some counterexamples: families of space-times where no Birkhoff-type theorem is valid. These counterexamples further confirm the conjecture, that the Birkhoff-type theorems have their origin in the property, that the two eigenvalues of the Ricci tensor of two-dimensional pseudo-Riemannian spaces always coincide, a property not having an analogy in higher dimensions. Hence, Birkhoff-type theorems exist only for those physical situations which are reducible to two dimensions.Comment: 26 pages, updated references, minor text changes, accepted by Gen. Relat. Gra

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Quantum Diffeomorphisms and Conformal Symmetry

    Get PDF
    We analyze the constraints of general coordinate invariance for quantum theories possessing conformal symmetry in four dimensions. The character of these constraints simplifies enormously on the Einstein universe R×S3R \times S^3. The SO(4,2)SO(4,2) global conformal symmetry algebra of this space determines uniquely a finite shift in the Hamiltonian constraint from its classical value. In other words, the global Wheeler-De Witt equation is {\it modified} at the quantum level in a well-defined way in this case. We argue that the higher moments of T00T^{00} should not be imposed on the physical states {\it a priori} either, but only the weaker condition ⟨T˙00⟩=0\langle \dot T^{00} \rangle = 0. We present an explicit example of the quantization and diffeomorphism constraints on R×S3R \times S^3 for a free conformal scalar field.Comment: PlainTeX File, 37 page

    AXIN2-related oligodontia-colorectal cancer syndrome with cleft palate as a possible new feature

    Get PDF
    Background: Pathogenic variants in AXIN2 have been associated with tooth agenesis, colon polyps, and colon cancer. Given the rare nature of this phenotype, we set out to collect additional genotypic and phenotypic information. Methods: Data were collected via a structured questionnaire. Sequencing was performed in these patients mostly due to diagnostic purpose. A little more than half of the AXIN2 variant carriers were identified by NGS; other six were family members. Results: Here, we report 13 individuals with a heterozygous AXIN2 pathogenic/likely pathogenic variant who have a variable expression of oligodontia-colorectal cancer syndrome (OMIM 608615) or oligodontia-cancer predisposition syndrome (ORPHA 300576). Three individuals from one family also had cleft palate, which might represent a new clinical feature of AXIN2 phenotype, also given the fact that AXIN2 polymorphisms have been found in association with oral clefting in population studies. AXIN2 has already been added to multigene cancer panel tests; further research should be conducted to determine whether it should be added to cleft lip/palate multigene panels. Conclusion: More clarity about oligodontia-colorectal cancer syndrome, about the variable expression, and associated cancer risks is needed to improve clinical management and to establish guidelines for surveillance. We collected information about the surveillance that was advised, which might support clinical management of these patients.</p

    Newtonian Limit of Conformal Gravity

    Get PDF
    We study the weak-field limit of the static spherically symmetric solution of the locally conformally invariant theory advocated in the recent past by Mannheim and Kazanas as an alternative to Einstein's General Relativity. In contrast with the previous works, we consider the physically relevant case where the scalar field that breaks conformal symmetry and generates fermion masses is nonzero. In the physical gauge, in which this scalar field is constant in space-time, the solution reproduces the weak-field limit of the Schwarzschild--(anti)DeSitter solution modified by an additional term that, depending on the sign of the Weyl term in the action, is either oscillatory or exponential as a function of the radial distance. Such behavior reflects the presence of, correspondingly, either a tachion or a massive ghost in the spectrum, which is a serious drawback of the theory under discussion.Comment: 9 pages, comments and references added; the version to be published in Phys. Rev.

    Why Does Inflation Start at the Top of the Hill?

    Full text link
    We show why the universe started in an unstable de Sitter state. The quantum origin of our universe implies one must take a `top down' approach to the problem of initial conditions in cosmology, in which the histories that contribute to the path integral, depend on the observable being measured. Using the no boundary proposal to specify the class of histories, we study the quantum cosmological origin of an inflationary universe in theories like trace anomaly driven inflation in which the effective potential has a local maximum. We find that an expanding universe is most likely to emerge in an unstable de Sitter state, by semiclassical tunneling via a Hawking-Moss instanton. Since the top down view is forced upon us by the quantum nature of the universe, we argue that the approach developed here should still apply when the framework of quantum cosmology will be based on M-Theory.Comment: 21 pages, 1 figur
    • …
    corecore