31 research outputs found

    Behavior Modes, Pathways and Overall Trajectories: Eigenvector and Eigenvalue Analysis of Dynamic Systems

    Get PDF
    One of the most fundamental principles in system dynamics is the premise that the structure of the system will generate its behavior. Such philosophical position has fostered the development of a number of formal methods aimed at understanding the causes of model behavior. To most in the field of system dynamics, behavior is commonly understood as modes of behavior (e.g., exponential growth, exponential decay, and oscillation) because of their direct association with the feedback loops (e.g., reinforcing, balancing, and balancing with delays, respectively) that generate them. Hence, traditional research on formal model analysis has emphasized which loops cause a particular “mode” of behavior, with eigenvalues representing the most important link between structure and behavior. The main contribution of this work arises from a choice to focus our analysis in the overall trajectory of a state variable – a broader definition of behavior than that of a specific behavior mode. When we consider overall behavior trajectories, contributions from eigenvectors are just as central as those from eigenvalues. Our approach to understanding model behavior derives an equation describing overall behavior trajectories in terms of both eigenvalues and eigenvectors. We then use the derivatives of both eigenvalues and eigenvectors with respect to link (or loop) gains to measure how they affect overall behavior trajectories over time. The direct consequence of focusing on behavior trajectories is that system dynamics researchers' reliance on eigenvalue elasticities can be seen as too-narrow a focus on model behavior – a focus that has excluded the short term impact of a change in loop (or link) gain in its analysis

    On generalized inverses of singular matrix pencils

    No full text
    Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils

    On Network Models and the Symbolic Solution of Network Equations

    No full text
    This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development of this area. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modified so as to obtain an admittance representation for all kinds of multi-ports. N-dimensional networks are defined as graphs with the algebraic structure of N-dimensional vectors. In civil engineering, framed structures in two and three spatial dimensions can be modeled as 3-dimensional or 6-dimensional networks. The separation of geometry from topology is a characteristic feature of such networks

    Wirkungsabläufe in Steuerungen und Regelungen

    No full text
    corecore