8 research outputs found

    Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model

    Get PDF
    Background Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. Methods Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. Results In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). Conclusions Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation

    Improved GFR and renal plasma perfusion following remote ischaemic conditioning in a porcine kidney transplantation model

    No full text
    Delayed graft function (DGF) complicates approximately 25% of kidney allografts donated after brain death (DBD). Remote ischaemic conditioning (rIC) involves brief, repetitive, ischaemia in a distant tissue in connection with ischaemia/reperfusion in the target organ. rIC has been shown to induce systemic protection against ischaemic injuries. Using a porcine kidney transplantation model with donor (63 kg) recipient (15 kg) size mismatch, we investigated the effects of recipient rIC on early renal plasma perfusion and GFR. Brain death was induced in donor pigs (n = 8) and kidneys were removed and kept in cold storage until transplantation. Nephrectomized recipient pigs were randomized to rIC (n = 8) or non-rIC (n = 8) with one kidney from the same donor in each group. rIC consisted of 4 x 5 min clamping of the abdominal aorta. GFR was significantly higher in the rIC group compared with non-rIC (7.2 ml/min vs. 3.4 ml/min; ?GFR = 3.7 ml/min, 95%-CI: 0.37.2 ml/min, P = 0.038). Renal plasma perfusion in both cortex and medulla measured by dynamic contrast-enhanced magnetic resonance imaging (MRI) was significantly higher over time in the rIC group compared with non-rIC. This experimental study demonstrated a positive effect of rIC on early graft perfusion and function in a large animal transplantation model.</p

    En styrking av menneskerettighetene? Betydningen av grunnlovsrevisjonen i 2014 for internasjonale menneskerettigheters stilling i norsk rett (A Strengthening of Human Rights? The Relevance of the Constitutional Revision in 2014 for the International Human Rightts Status in Norwegian Law)

    No full text
    corecore