71 research outputs found

    Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites") in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD) can utilize directly infused or systemic neurotoxins.</p> <p>Results</p> <p>We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+) and UB-(+) aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes.</p> <p>Conclusion</p> <p>Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a differentiated human neural cell mimics changes of early Parkinson's disease and may be useful for screening therapeutics for neuroprotection in that disease stage.</p

    20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action

    Get PDF
    We recently isolated 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH3-PPD), a natural product from Panax notoginseng, and demonstrated its cytotoxicity against a variety of cancer cells. Here we report the effects of this compound in vitro and in vivo on human prostate cancer cells, LNCaP (androgen-dependent) and PC3 (androgen-independent), in comparison with three structurally related ginsenosides, ginsenoside Rh2, ginsenoside Rg3, and 20(S)-protopanaxadiol. Of the four test compounds, 25-OCH3-PPD was most potent. It decreased survival, inhibited proliferation, induced apoptosis, and led to G1 cell cycle arrest in both cell lines. It also decreased the levels of proteins associated with cell proliferation (MDM2, E2F1, cyclin D1, and cdks 2 and 4) and increased or activated pro-apoptotic proteins (cleaved PARP, cleaved caspase-3, -8, and -9). In LNCaP cells, 25-OCH3-PPD inhibited the expression of the androgen receptor and prostate-specific antigen. Moreover, 25-OCH3-PPD inhibited the growth of prostate cancer xenograft tumours. Combining 25-OCH3-PPD with conventional chemotherapeutic agents or with radiation led to potent antitumour effects; tumour regression was almost complete following administration of 25-OCH3-PPD and either taxotere or gemcitabine. 25-OCH3-PPD also demonstrated low toxicity to noncancer cells and no observable toxicity in animals. In conclusion, our preclinical data indicate that 25-OCH3-PPD is a potential therapeutic agent against both androgen-dependent and androgen-independent prostate cancer

    Plantar angiomyxolipoma in a child

    No full text
    • …
    corecore