16 research outputs found

    Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds

    Get PDF
    Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, [N17A/F32T]-AnTx, which showed comparable Kv1.3 affinity to the wild-type peptide, but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace, by chemical synthesis, all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly, the key pharmacological properties of the Sec-[N17A/F32T]-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and Se-77-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-[N17A/F32T]-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge

    Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds

    Get PDF
    Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, N17A/F32T-AnTx{,} which showed comparable Kv1.3 affinity to the wild-type peptide{,} but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace{,} by chemical synthesis{,} all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly{,} the key pharmacological properties of the Sec-N17A/F32T-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and 77Se-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-N17A/F32T-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge

    An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility

    Get PDF
    The voltage-gated Kv1.3 K(+) channel plays a key role in the activation of T lymphocytes. Kv1.3 blockers selectively suppress immune responses mediated by effector memory T cells, which indicates the great potential of selective Kv1.3 inhibitors in the therapy of certain autoimmune diseases. Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin is a high affinity blocker of Kv1.3, but also blocks Kv1.2 with similar potency. We designed and produced three AnTx variants: ([F32T]-AnTx, [N17A]-AnTx, [N17A/F32T]-AnTx) using solid-phase synthesis with the goal of improving the selectivity of the toxin for Kv1.3 over Kv1.2 while keeping the high affinity for Kv1.3. We used the patch-clamp technique to determine the blocking potency of the synthetic toxins on hKv1.3, mKv1.1, hKv1.2 and hKCa3.1 channels. Of the three variants [N17A/F32T]-AnTx maintained the high affinity of the natural peptide for Kv1.3 but became more than 16000-fold selective over Kv1.2. NMR data and molecular dynamics simulations suggest that the more rigid structure with restricted conformational space of the double substituted toxin compared to the flexible wild-type one is an important determinant of toxin selectivity. Our results provide the foundation for the possibility of the production and future therapeutic application of additional, even more selective toxins targeting various ion channels
    corecore