47 research outputs found

    Self-dual Einstein Spaces, Heavenly Metrics and Twistors

    Full text link
    Four-dimensional quaternion-Kahler metrics, or equivalently self-dual Einstein spaces M, are known to be encoded locally into one real function h subject to Przanowski's Heavenly equation. We elucidate the relation between this description and the usual twistor description for quaternion-Kahler spaces. In particular, we show that the same space M can be described by infinitely many different solutions h, associated to different complex (local) submanifolds on the twistor space, and therefore to different (local) integrable complex structures on M. We also study quaternion-Kahler deformations of M and, in the special case where M has a Killing vector field, show that the corresponding variations of h are related to eigenmodes of the conformal Laplacian on M. We exemplify our findings on the four-sphere S^4, the hyperbolic plane H^4 and on the "universal hypermultiplet", i.e. the hypermultiplet moduli space in type IIA string compactified on a rigid Calabi-Yau threefold.Comment: 44 pages, 1 figure; misprints correcte

    \ast-SDYM fields and heavenly spaces: II. Reductions of the \ast-SDYM system

    Full text link
    Reductions of self-dual Yang-Mills (SDYM) system for \ast-bracket Lie algebra to the Husain-Park (HP) heavenly equation and to sl(N,{\boldmath{C}) SDYM equation are given. An example of a sequence of su(N)su(N) chiral fields (N2N\geq 2) tending for NN\to\infty to a curved heavenly space is found.Comment: 18 page

    The Weyl bundle as a differentiable manifold

    Full text link
    Construction of an infinite dimensional differentiable manifold R{\mathbb R}^{\infty} not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra and a Weyl algebra bundle are presented. Continuity of the \circ-product in the Tichonov topology is proved. Construction of the *-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained.Comment: 31 pages; revised version - some typoes have been eliminated, notation has been simplifie

    Projective representation of k-Galilei group

    Full text link
    The projective representations of k-Galilei group G_k are found by contracting the relevant representations of k-Poincare group. The projective multiplier is found. It is shown that it is not possible to replace the projective representations of G_k by vector representations of some its extension.Comment: 15 pages Latex fil

    Weyl-Underhill-Emmrich quantization and the Stratonovich-Weyl quantizer

    Full text link
    Weyl-Underhill-Emmrich (WUE) quantization and its generalization are considered. It is shown that an axiomatic definition of the Stratonovich-Weyl (SW) quantizer leads to severe difficulties. Quantization on the cylinder within the WUE formalism is discussed.Comment: 15+1 pages, no figure

    Metastable de Sitter vacua in N=2 to N=1 truncated supergravity

    Get PDF
    We study the possibility of achieving metastable de Sitter vacua in general N=2 to N=1 truncated supergravities without vector multiplets, and compare with the situations arising in N=2 theories with only hypermultiplets and N=1 theories with only chiral multiplets. In N=2 theories based on a quaternionic manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable, as a result of the peculiar properties of the geometry. In N=1 theories based on a Kahler manifold and a superpotential, de Sitter vacua can instead be metastable provided the geometry satisfies some constraint and the superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial requirement is then that the tachyon of the mother theory be projected out from the daughter theory, so that the original unstable vacuum is projected to a metastable vacuum. We study the circumstances under which this may happen and derive general constraints for metastability on the geometry and the gauging. We then study in full detail the simplest case of quaternionic manifolds of dimension four with at least one isometry, for which there exists a general parametrization, and study two types of truncations defining Kahler submanifolds of dimension two. As an application, we finally discuss the case of the universal hypermultiplet of N=2 superstrings and its truncations to the dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in such theories are necessarily unstable in weakly coupled situations, while they can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure

    Noncommutativity, generalized uncertainty principle and FRW cosmology

    Full text link
    We consider the effects of noncommutativity and the generalized uncertainty principle on the FRW cosmology with a scalar field. We show that, the cosmological constant problem and removability of initial curvature singularity find natural solutions in this scenarios.Comment: 8 pages, to appear in IJT

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    \ast-SDYM Fields and Heavenly Spaces. I. \ast-SDYM equations as an integrable system

    Full text link
    It is shown that the self-dual Yang-Mills (SDYM) equations for the \ast-bracket Lie algebra on a heavenly space can be reduced to one equation (the \it master equation\rm). Two hierarchies of conservation laws for this equation are constructed. Then the twistor transform and a solution to the Riemann-Hilbert problem are given.Comment: 25 page

    Deformation Quantization of Geometric Quantum Mechanics

    Get PDF
    Second quantization of a classical nonrelativistic one-particle system as a deformation quantization of the Schrodinger spinless field is considered. Under the assumption that the phase space of the Schrodinger field is CC^{\infty}, both, the Weyl-Wigner-Moyal and Berezin deformation quantizations are discussed and compared. Then the geometric quantum mechanics is also quantized using the Berezin method under the assumption that the phase space is CPCP^{\infty} endowed with the Fubini-Study Kahlerian metric. Finally, the Wigner function for an arbitrary particle state and its evolution equation are obtained. As is shown this new "second quantization" leads to essentially different results than the former one. For instance, each state is an eigenstate of the total number particle operator and the corresponding eigenvalue is always 1{1 \over \hbar}.Comment: 27+1 pages, harvmac file, no figure
    corecore