77 research outputs found

    VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP) during the estrous cycle.

    Get PDF
    Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus

    Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    Get PDF
    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article describes the control of this microscope for lithography via beam steering/blanking electronics and evaluates the high-resolution performance of scanning helium-ion-beam lithography. The authors found that sub-10 nm-half-pitch patterning is feasible. They also measured a point-spread function that indicates a reduction in the micrometer-range proximity effect typical in electron-beam lithography.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP) during the estrous cycle.

    No full text
    Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus
    corecore