5 research outputs found
Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site
Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations
A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairment - ThinkingFit: : pilot and feasibility study for a randomized controlled trial
© 2014 Dannhauser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The version of record, Thomas M. Dannhauser, Martin Cleverly, Tim J. Whitfield, Ben (C) Fletcher, and Tim Stevens, 'A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairment - ThinkingFit: pilot and feasibility study for a randomized controlled trial', BMC Psychiatry, 2014, 14: 129, is available online via doi: 10.1186/1471-244X-14-129Dementia affects 35 million people worldwide and is currently incurable. Many cases may be preventable because regular participation in physical, mental and social leisure activities during middle age is associated with up to 47% dementia risk reduction. However, the majority of middle-aged adults are not active enough. MCI is therefore a clear target for activity interventions aimed at reducing dementia risk. An active lifestyle during middle age reduces dementia risk but it remains to be determined if increased activity reduces dementia risk when MCI is already evident. Before this can be investigated conclusively, complex multimodal activity programmes are required that (1) combine multiple health promoting activities, (2) engage people with MCI, and (3) result in sufficient adherence ratesPeer reviewedFinal Published versio
Mutation K42R in Ribosomal Protein S12 Does Not Affect Susceptibility of Mycobacterium smegmatis 16S rRNA A-Site Mutants to 2-Deoxystreptamines
Recent studies have suggested that ribosomal protein S12 modulates 16S rRNA function and susceptibility to 2-deoxystreptamine aminoglycosides. To study whether the non-restrictive K42R mutation in RpsL affects 2-deoxystreptamine susceptibility in Mycobacterium smegmatis, we studied the drug susceptibility pattern of various mutants with genetic alterations in the 16S rRNA decoding A-site in the context of wild-type and mutant protein S12. RpsL K42R substitution was found not to affect the drug resistance pattern associated with mutational alterations in 16S rRNA H44.European Commission (PAR, FP7-HEALTH-2009-241476