161 research outputs found
Recommended from our members
Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications
Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments
Recommended from our members
SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS
In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments
Recommended from our members
DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review
The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design
The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys
Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)
Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC
Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult
Recommended from our members
Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC
Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult
Recommended from our members
Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14CR15Y2C15B6 and Variants
The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of stainless steels and Ni-based Alloy C-22 (UNS No. N06022), based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Electrochemical studies of the passive film stability of SAM1651 are reported here. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Yttrium-containing SAM1651, also known as SAM7 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while yttrium-free SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders have irregular shape, which makes pneumatic conveyance during thermal spray deposition difficult. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM1651 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous nature is preserved during thermal spraying. Materials synthesis and characterization is discussed. Data showing the corrosion resistance of SAM1651 in hot concentrated calcium chloride, as well as natural seawater are presented, and compared to a number of reference materials
Recommended from our members
High-Performance Corrosion-Resistant Iron-Based Amorphous Metals - The Effects of Composition, Structure and Environment: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4
Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to (or better than) that of Ni-based Alloy C-22 (UNS No. N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has no yttrium, and is characterized by relatively high critical cooling rates of approximately 600 Kelvin per second. Data for the SAM2X5 formulation is reported here. In contrast to yttrium-containing iron-based amorphous metals, SAM2X5 can be readily gas atomized to produce spherical powders which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM2X5 also experiences crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM2X5 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous nature is preserved during thermal spraying. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN [MRS12-13]. Such hardness makes these materials particularly attractive for applications where corrosion-erosion and wear are also issues. Since SAM2X5 has high boron content, it can absorb neutrons efficiently, and may therefore find useful applications as a criticality control material within the nuclear industry
- …