10 research outputs found

    C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

    Get PDF
    BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis

    Isolation, cultivation and identification of Borrelia burgdorferi genospecies from Ixodes ricinus from the city of Brno, Czech Republic

    No full text
    A total of 305 ticks (21 larvae, 243 nymphs, 19 females and 22 males) were collected by fl agging of vegetation in suburban woods of Pisárky Park (city of Brno) from July to October 2002. The midgut of each tick was dissected out and transferred individually into BSK-H medium. After cultivation, all specimens were examined by dark-fi eld microscopy (DFM) for the presence of borreliae. Out of 305 tick samples, 45 were (14.8%) DFM positive. The following polymerase chain reaction (PCR) then revealed 37 (12.1%) samples positive for the presence of Borrelia burgdorferi sensu lato DNA. All 37 samples were further analysed by restriction fragment length polymorphism (RFLP) method. PCR-RFLP analysis revealed 14 strains of B. afzelii (37.8%), 15 strains of B. garinii (40.5%) and 2 strains of B. burgdorferi sensu stricto (5.4%). Four samples (10.8%) showed a mixed population of these genospecies. Two samples produced atypical RFLP pattern which were detected by sequence analysis as B. valaisiana (5.4%). Isolation attempts resulted in 21 spirochaetal strains (including two stains of B. valaisiana). The results show the diversity of B. burgdorferi s.l. in tick population and refer the risk of infection by pathogenic borreliae in Brno

    Short and tall stature: a new paradigm emerges

    No full text
    corecore