1,209 research outputs found
Pressure dependence of diffusion in simple glasses and supercooled liquids
Using molecular dynamics simulation, we have calculated the pressure
dependence of the diffusion constant in a binary Lennard-Jones Glass. We
observe four temperature regimes. The apparent activation volume drops from
high values in the hot liquid to a plateau value. Near the critical temperature
of the mode coupling theory it rises steeply, but in the glassy state we find
again small values, similar to the ones in the liquid. The peak of the
activation volume at the critical temperature is in agreement with the
prediction of mode coupling theory
Diffusion and jump-length distribution in liquid and amorphous CuZr
Using molecular dynamics simulation, we calculate the distribution of atomic
jum ps in CuZr in the liquid and glassy states. In both states
the distribution of jump lengths can be described by a temperature independent
exponential of the length and an effective activation energy plus a
contribution of elastic displacements at short distances. Upon cooling the
contribution of shorter jumps dominates. No indication of an enhanced
probability to jump over a nearest neighbor distance was found. We find a
smooth transition from flow in the liquid to jumps in the g lass. The
correlation factor of the diffusion constant decreases with decreasing
temperature, causing a drop of diffusion below the Arrhenius value, despite an
apparent Arrhenius law for the jump probability
Shared Parental Leave: Exploring Variations in Attitudes, Eligibility, Knowledge and Take-up Intentions of Expectant Mothers in London
In April 2015, the UK introduced Shared Parental Leave (SPL), allowing mothers to transfer their maternity leave to their partners from two weeks after the birth or adoption of a child. There has been very limited research conducted on this leave policy to date and knowledge on take-up is poor. We present findings from an in-depth survey conducted with expectant mothers in two NHS trusts in England on their knowledge, views and plans around leave after the birth of their child and examine variations across educational and ethnic groups. A total of 575 expectant mothers took part in the survey. Around 7.4 per cent of expectant mothers who were (self-)employed or in education intended to take SPL. Finances and worries over fathers’ careers were cited as the primary barriers to take up of SPL. Individual entitlement for fathers and knowing others who took SPL increased individuals’ reported intention to take SPL. Applying logistic regression models, we found that knowledge of and access to SPL is correlated with education, ethnicity and home ownership. Future research and policy design should attend to such issues to ensure equitable access across families
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
Phonon spectrum and soft-mode behavior of MgCNi_3
Temperature dependent inelastic neutron-scattering measurements of the
generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give
evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are
compared with ab initio density functional calculations which suggest an
incipient lattice instability of the stoichiometric compound with respect to Ni
vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
Phonons and Colossal Thermal Expansion Behavior of Ag3Co(CN)6 and Ag3Fe(CN)6
Recently colossal positive volume thermal expansion has been found in the
framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. Phonon spectra have been
measured using the inelastic neutron scattering technique as a function of
temperature and pressure. The data has been analyzed using ab-initio
calculations. We find that the bonding is very similar in both compounds. At
ambient pressure modes in the intermediate frequency part of the vibrational
spectra in the Co compound are shifted to slightly higher energies as compared
to the Fe compound. The temperature dependence of the phonon spectra gives
evidence for large explicit anharmonic contribution to the total anharmonicity
for low-energy modes below 5 meV. We found that modes are mainly affected by
the change in the size of unit cell, which in turn changes the bond lengths and
vibrational frequencies. Thermal expansion has been calculated via the volume
dependence of phonon spectra. Our analysis indicates that Ag phonon modes in
the energy range from 2 to 5 meV are strongly anharmonic and major contributors
to thermal expansion in both compounds. The application of pressure hardens the
low-energy part of the phonon spectra involving Ag vibrations and confirms the
highly anharmonic nature of these modes.Comment: 19 pages, 14 figures and one tabl
Sparse random matrices and vibrational spectra of amorphous solids
A random matrix approach is used to analyze the vibrational properties of
amorphous solids. We investigated a dynamical matrix M=AA^T with non-negative
eigenvalues. The matrix A is an arbitrary real NxN sparse random matrix with n
independent non-zero elements in each row. The average values =0 and
dispersion =V^2 for all non-zero elements. The density of vibrational
states g(w) of the matrix M for N,n >> 1 is given by the Wigner quarter circle
law with radius independent of N. We argue that for n^2 << N this model can be
used to describe the interaction of atoms in amorphous solids. The level
statistics of matrix M is well described by the Wigner surmise and corresponds
to repulsion of eigenfrequencies. The participation ratio for the major part of
vibrational modes in three dimensional system is about 0.2 - 0.3 and
independent of N. Together with term repulsion it indicates clearly to the
delocalization of vibrational excitations. We show that these vibrations spread
in space by means of diffusion. In this respect they are similar to diffusons
introduced by Allen, Feldman, et al., Phil. Mag. B 79, 1715 (1999) in amorphous
silicon. Our results are in a qualitative and sometimes in a quantitative
agreement with molecular dynamic simulations of real and model glasses.Comment: 24 pages, 7 figure
- …