115,126 research outputs found
Helical channel design and technology for cooling of muon beams
Novel magnetic helical channel designs for capture and cooling of bright muon
beams are being developed using numerical simulations based on new inventions
such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF)
cavities. We are close to the factor of a million six-dimensional phase space
(6D) reduction needed for muon colliders. Recent experimental and simulation
results are presented.Comment: 6 pp. 14th Advanced Accelerator Concepts Workshop 13-19 Jun 2010:
Annapolis, Marylan
A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems
In this paper we present an analysis of the complexities of large group
collaboration and its application to develop detailed requirements for
collaboration schema for Autonomous Systems (AS). These requirements flow from
our development of a framework for collaboration that provides a basis for
designing, supporting and managing complex collaborative systems that can be
applied and tested in various real world settings. We present the concepts of
"collaborative flow" and "working as one" as descriptive expressions of what
good collaborative teamwork can be in such scenarios. The paper considers the
application of the framework within different scenarios and discuses the
utility of the framework in modelling and supporting collaboration in complex
organisational structures
Theory of enhanced performance emerging in a sparsely-connected competitive population
We provide an analytic theory to explain Anghel et al.'s recent numerical
finding whereby a maximum in the global performance emerges for a
sparsely-connected competitive population [Phys. Rev. Lett. 92, 058701 (2004)].
We show that the effect originates in the highly-correlated dynamics of
strategy choice, and can be significantly enhanced using a simple modification
to the model.Comment: This revised version will appear in PRE as a Rapid Com
A Target Restricted Assembly Method (TRAM) for Phylogenomics
While next generation sequencing technology can produce sequences covering the entire genome, assembly and annotation are still prohibitive steps for many phylogenomics applications. Here we describe a method of Target Restricted Assembly (TRAM) of a single lane of Illumina sequences for genes of relevance to phylogeny reconstruction, i.e. single copy protein-coding genes. This method has the potential to produce a data set of hundreds of genes using only one Illumina lane per taxon
- …