8 research outputs found

    The first evidence of a new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and unvaccinated broiler flocks in Algeria

    Get PDF
    Background and Aim: Avian infectious bronchitis virus (IBV) frequently infects broilers and is responsible for severe economic losses to the poultry industry worldwide. It has also been associated with kidney damage in the broiler flocks. The aim of the present study is to determine the presence of IBV and its possible involvement in kidney damage of broiler chicks. Materials and Methods: 14 clinically diseased broiler flocks from Western and Central Algeria were sampled and analyzed by hemagglutination inhibition (HI) test and reverse transcriptase-polymerase chain reaction (RT-PCR) followed by phylogenic analysis. Results: The QX (100%) and 4/91 (60%) IBV serotypes were the most prevalent in the kidney damaged broilers regardless of vaccination status. The molecular detection of avian IBV by RT-PCR identified six samples as positive, of which only two isolates were typable by sequencing. We identified a novel IBDZ13a genotype which showed 93% sequence homology to the partial-S1 gene sequence of the IB 4/91 commercial vaccine strain. Sequencing analysis characterized this virus as a novel and divergent IB 4/91 field virus with eight amino acid substitutions that might have resulted in altered immunogenicity. Conclusion: The isolation of a new IBV strain (IBDZ13a) from vaccinated broiler flocks may explain the failure of the vaccination programs against IBV field strains. Combination of the HI test and RT-PCR indicated that the nephropathogenic IB outbreaks in broilers are related to this novel strain

    Cordycepin Blocks Lung Injury-Associated Inflammation and Promotes BRCA1-Deficient Breast Cancer Cell Killing by Effectively Inhibiting PARP

    No full text
    Cordycepin has been shown to interfere with a myriad of molecular processes from RNA elongation to kinase activity, and prevents numerous inflammatory processes in animal models. Here we show in a mouse model of LPS-induced acute lung injury that cordycepin prevents airway neutrophilia via a robust blockade of expression of several inflammatory genes, including the adhesion molecule ICAM-1 and VCAM-1, the cytokine/chemokine MCP-1, MIP-1α, MIP-2 and KC, and the chemokine receptor CXCR2. Such a blockade appears to be related to a severe reduction in TNF-α expression. Interestingly, in an in vitro system of A549 epithelial cell inflammation, cordycepin effectively blocked LPS-induced, but not TNF-α-induced, VCAM-1 expression. Such effects correlated with a marked reduction in p65-NF-κB activation as assessed by its phosphorylation at serine-536 but without an apparent effect on its nuclear translocation. The effects of cordycepin on the expression of VCAM-1 and ICAM-1, and of NF-κB activation and nuclear translocation upon TNF-α stimulation resembled the effects achieved upon poly(ADP-ribose) polymerase (PARP) inhibition, suggesting that cordycepin may function as a PARP inhibitor. Indeed, cordycepin blocked H2O2-induced PARP activation in A549 cells. In a cell-free system, cordycepin inhibited PARP-1 activity at nanomolar concentrations. Similar to PARP inhibitors, cordycepin significantly induced killing of breast cancer susceptibility gene (BRCA1)-deficient MCF-7 cells, supporting its therapeutic use for the treatment of BRCA-deficient breast cancers. With added antiinflammatory characteristics, therapies that include cordycepin may prevent potential inflammation triggered by traditional chemotherapeutic drugs. Cordycepin, to the best of our knowledge, represents the first natural product possessing PARP inhibitory traits
    corecore