5 research outputs found

    Effects of new polymorphisms in the bovine myocyte enhancer factor 2D (MEF2D) gene on the expression rates of the longissimus dorsi muscle

    Get PDF
    Myocyte enhancer factor 2D (MEF2D), a product of the MEF2D gene, belongs to the myocyte enhancer factor 2 (MEF2) protein family which is involved in vertebrate skeletal muscle development and differentiation during myogenesis. The aim of the present study was to search for polymorphisms in the bovine MEF2D gene and to analyze their effect on MEF2D mRNA and on protein expression levels in the longissimus dorsi muscle of Polish Holstein–Friesian cattle. Overall, three novel variations, namely, insertion/deletion g.−818_−814AGCCG and g.−211C<A transversion in the promoter region as well as g.7C<T transition in the 5′untranslated region (5′UTR), were identified by DNA sequencing. A total, 375 unrelated bulls belonging to six different cattle breeds were genotyped, and three combined genotypes (Ins-C-C/Ins-C-C, Del-A-T/Del-A-T and Ins-C-C/Del-A-T) were determined. The frequency of the combined genotype Ins-C-C/Ins-C-C and Del-A-T/Del-A-T was varied between the breeds and the average frequency was 0.521 and 0.037, respectively. Expression analysis showed that the MEF2D variants were highly correlated with MEF2D mRNA and protein levels in the longissimus dorsi muscle of Polish Holstein–Friesian bulls carrying the three different combined genotypes. The highest MEF2D mRNA and protein levels were estimated in the muscle of bulls with the Ins-C-C/Ins-C-C homozygous genotype as compared to the Del-A-T/Del-A-T homozygotes (P < 0.01) and Ins-C-C/Del-A-T heterozygotes (P < 0.05). A preliminary association study showed no significant differences in the carcass quality traits between bulls with various MEF2D combined genotypes in the investigated population of Polish Holstein–Friesian cattle

    Effects of Housing Systems and the Diet Supplements on the Slaughter Value and Concentration of Mineral Elements in the Loin Muscle of Lambs

    No full text
    The objective of this study was to investigate the effect of maintenance system as well as the effect of Se, Zn, and vitamin E supplementation of ram-lambs on the slaughter value and concentration of mineral elements in the loin muscle of lambs. The experiment was conducted on 72 Polish Merino ram-lambs divided into three groups: group C, indoor with no supplement, 19 lambs; S, indoor with supplement, 23 lambs; G, outdoor with no supplement, 30 lambs. From birth all the lambs were maintained indoor with their dams and then weaned at the age of 8 weeks. The rams from group C and S were placed in individual straw-bedded pens and fattened individually with concentrate mixture offered ad libitum until the age of 16 weeks. The lambs from group G were grazed every day from May to July (2 months). During the fattening period each lamb from the supplemented group S was administered per os 1 mL 0.1% Na2SeO4 (Se, 0.42 mg), 3 mL 10% ZnSO4 (Zn, 68 mg), and 1 mL premix protect vitamin E (0.1 g α-tocopherol, 5 mg lysine, 5 mg methionine) daily. A comparison of half carcasses across the groups has shown no difference between the control group and the one with supplements, while the weight of half carcasses in the grazing group was smaller in comparison with groups C and S (p<0.001). The meat content in the pelvic limb showed no differences across all groups under study. The pelvic limb of grazing lambs contained less fat compared to the control and supplemented groups (p<0.001). The concentrations of Se and Zn in the blood plasma of ram-lambs from the supplemented group were significantly higher than for the control and grazing lambs. Inorganic Se and Zn supplementation with vitamin E to the diet of lambs increased Se and Zn levels in loin muscle (p<0.001) to 0.46 μg/g and 32.9 μg/g in fresh tissue, respectively
    corecore