223 research outputs found

    Detailed Measurements of Characteristic Profiles of Magnetic Diffuse Scattering in ErB2_2C2_2

    Full text link
    Detailed neutron diffraction measurements on a single crystalline ErB2_2C2_2 were performed. We observed magnetic diffuse scattering which consists of three components just above the transition temperatures, which is also observed in characteristic antiferroquadrupolar ordering compounds HoB2_2C2_2 and TbB2_2C2_2. The result of this experiments indicates that the antiferroquadrupolar interaction is not dominantly important as a origin of the magnetic diffuse scattering.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Neutron scattering study of magnetic ordering and excitations in the ternary rare-earth diborocarbide Ce^{11}B_2C_2

    Full text link
    Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce11^{11}B2_2C2_2. The powder diffraction experiment confirms formation of a long-range magnetic order at TN=7.3T_{\rm N} = 7.3 K, where a sinusoidally modulated structure is realized with the modulation vector q=[0.167(3),0.167(3),0.114(3)]{\bm q} = [0.167(3), 0.167(3), 0.114(3)]. Inelastic excitation spectra in the paramagnetic phase comprise significantly broad quasielastic and inelastic peaks centered at ω0,8\hbar \omega \approx 0, 8 and 65 meV. Crystalline-electric-field (CEF) analysis satisfactorily reproduces the observed spectra, confirming their CEF origin. The broadness of the quasielastic peak indicates strong spin fluctuations due to coupling between localized 4f4f spins and conduction electrons in the paramagnetic phase. A prominent feature is suppression of the quasielastic fluctuations, and concomitant growth of a sharp inelastic peak in a low energy region below TNT_{\rm N}. This suggests dissociation of the conduction and localized 4f4f electrons on ordering, and contrasts the presently observed incommensurate phase with spin-density-wave order frequently seen in heavy fermion compounds, such as Ce(Ru1x_{1-x}Lax_x)2_2Si2_2.Comment: accepted for publication in Phys. Rev.

    Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi2_2Al20_{20}

    Full text link
    The cubic compound PrTi2_2Al20_{20} is a quadrupolar Kondo lattice system that exhibits quadrupolar ordering due to the non-Kramers Γ3\Gamma_3 ground doublet and has strong hybridization between 4f4f and conduction electrons. Our study using high-purity single crystal reveals that PrTi2_2Al20_{20} exhibits type-II superconductivity at Tc=200T_{\rm c} = 200 mK in the nonmagnetic ferroquadrupolar state. The superconducting critical temperature and field phase diagram suggests moderately enhanced effective mass of m/m016m^*/m_0 \sim 16

    Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm

    Get PDF
    We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC

    Highly anisotropic strain dependencies in PrIr2_2Zn20_{20}

    Get PDF
    We report thermal expansion and magnetostriction of the cubic non-Kramers system PrIr2_2Zn20_{20} with a non-magnetic Γ3\varGamma_{3} ground state doublet. In previous experiments, antiferroquadrupolar order at \hbox{TQ=0.11T_{\mathrm{Q}}=0.11\,K} and a Fermi liquid state around Bc5B_{\mathrm{c}}\approx5\,T for \hbox{B[001]\boldsymbol{B}\parallel[001]}, indicative of possible ferrohastatic order, were discovered. For magnetic fields \hbox{B[001]\boldsymbol{B}\parallel[001]}, the low temperature longitudinal and transverse thermal expansion and magnetostriction are highly anisotropic. The resulting volume strain is very small, indicating that the Pr valence remains nearly constant as a function of magnetic field. We conclude that the Fermi liquid state around BcB_{\mathrm{c}} forms through a very little change in c-f hybridization. This result is in sharp contrast to Ce- and Yb-based Kramers Kondo lattices which show significantly larger volume strains due to the high sensitivity of the Kondo temperature to hydrostatic pressure.Comment: 8 pages, 8 figure
    corecore