9,971 research outputs found

    Dynamical Electroweak Symmetry Breaking in SO(5)xU(1) Gauge-Higgs Unification with Top and Bottom Quarks

    Full text link
    An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermions from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (\sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out \pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.Comment: 35 pages, 2 figures. A few corrections are mad

    Variation of Electrostatic Coupling and Investigation of Current Percolation Paths in Nanocrystalline Silicon Cross Transistors

    No full text
    Nanocrystalline silicon thin films are promising materials for the development of advanced Large Scale Integration compatible quantum-dot and single-electron charging devices. The films consist of nanometer-scale grains of crystalline silicon, separated by amorphous silicon or silicon dioxide grain boundaries up to a few nanometer thick. These films have been used to fabricate single-electron transistor and memory devices, where the grains form single-electron charging islands isolated by tunnel barriers formed by the grain boundaries. The grain boundary tunnel barrier isolating the grains is also of great importance, as this determines the extent of the electrostatic and tunnel coupling between different grains. These effects can lead to the nanocrystalline silicon thin film behaving as a system of coupled quantum dots.& more..
    • …
    corecore