11 research outputs found

    Angiotensin-Converting Enzyme Inhibitors, Angiotensin II Receptor Blockers, and Outcomes in Patients Hospitalized for COVID-19

    No full text
    BACKGROUND: Use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ACEi/ARB) is thought to affect COVID-19 through modulating levels of angiotensin-converting enzyme 2, the cell entry receptor for SARS-CoV2. We sought to assess the association between ACEi/ARB, biomarkers of inflammation, and outcomes in patients hospitalized for COVID-19. METHODS AND RESULTS: We leveraged the ISIC (International Study of Inflammation in COVID-19), identified patients admitted for symptomatic COVID-19 between February 1, 2020 and June 1, 2021 for COVID-19, and examined the association between in-hospital ACEi/ARB use and all-cause death, need for ventilation, and need for dialysis. We estimated the causal effect of ACEi/ARB on the composite outcomes using marginal structural models accounting for serial blood pressure and serum creatinine measures. Of 2044 patients in ISIC, 1686 patients met inclusion criteria, of whom 398 (23.6%) patients who were previously on ACEi/ARB received at least 1 dose during their hospitalization for COVID-19. There were 215 deaths, 407 patients requiring mechanical ventilation, and 124 patients who required dialysis during their hospitalization. Prior ACEi/ARB use was associated with lower levels of soluble urokinase plasminogen activator receptor and C-reactive protein. In multivariable analysis, in-hospital ACEi/ARB use was associated with a lower risk of the composite outcome of in-hospital death, mechanical ventilation, or dialysis (adjusted hazard ratio 0.49, 95% CI [0.36– 0.65]). CONCLUSIONS: In patients hospitalized for COVID-19, ACEi/ARB use was associated with lower levels of inflammation and lower risk of in-hospital outcomes. Clinical trials will define the role of ACEi/ARB in the treatment of COVID-19. REGISTRATION: URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT04818866. © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley

    Copper is required for oncogenic BRAF signalling and tumorigenesis

    No full text
    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers

    Inflammation, Hyperglycemia, and Adverse Outcomes in Individuals With Diabetes Mellitus Hospitalized for COVID-19

    No full text
    OBJECTIVE Diabetes mellitus (DM) is a major risk factor for severe coronavirus disease 2019 (COVID-19) for reasons that are unclear. RESEARCH DESIGN AND METHODS We leveraged the International Study of Inflammation in COVID-19 (ISIC), a multicen-ter observational study of 2,044 patients hospitalized with COVID-19, to characterize the impact of DM on in-hospital outcomes and assess the contribution of inflammation and hyperglycemia to the risk attributed to DM. We measured biomarkers of inflammation collected at hospital admission and collected glucose levels and insulin data throughout hospitalization. The primary outcome was the composite of in-hospi-tal death, need for mechanical ventilation, and need for renal replacement therapy. RESULTS Among participants (mean age 60 years, 58.2% males), those with DM (n = 686, 33.5%) had a significantly higher cumulative incidence of the primary outcome (37.8% vs. 28.6%) and higher levels of inflammatory biomarkers than those without DM. Among biomarkers, DM was only associated with higher soluble urokinase plas-minogen activator receptor (suPAR) levels in multivariable analysis. Adjusting for suPAR levels abrogated the association between DM and the primary outcome (adjusted odds ratio 1.23 [95% CI 0.78, 1.37]). In mediation analysis, we estimated the proportion of the effect of DM on the primary outcome mediated by suPAR at 84.2%. Hyperglycemia and higher insulin doses were independent predictors of the primary outcome, with effect sizes unaffected by adjusting for suPAR levels. CONCLUSIONS Our findings suggest that the association between DM and outcomes in COVID-19 is largely mediated by hyperinflammation as assessed by suPAR levels, while the impact of hyperglycemia is independent of inflammation. © 2022 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www. diabetesjournals.org/journals/pages/license

    Soluble Urokinase Plasminogen Activator Receptor and Venous Thromboembolism in COVID-19

    No full text
    BACKGROUND: Venous thromboembolism (VTE) contributes significantly to COVID-19 morbidity and mortality. The urokinase receptor system is involved in the regulation of coagulation. Levels of soluble urokinase plasminogen activator receptor (suPAR) reflect hyperinflammation and are strongly predictive of outcomes in COVID-19. Whether suPAR levels identify patients with COVID-19 at risk for VTE is unclear. METHODS AND RESULTS: We leveraged a multinational observational study of patients hospitalized for COVID-19 with suPAR and D-dimer levels measured on admission. In 1960 patients (mean age, 58 years; 57% men; 20% Black race), we assessed the association between suPAR and incident VTE (defined as pulmonary embolism or deep vein thrombosis) using logistic regression and Fine-Gray modeling, accounting for the competing risk of death. VTE occurred in 163 (8%) patients and was associated with higher suPAR and D-dimer levels. There was a positive association between suPAR and D-dimer (β=7.34; P=0.002). Adjusted for clinical covariables, including D-dimer, the odds of VTE were 168% higher comparing the third with first suPAR tertiles (adjusted odds ratio, 2.68 [95% CI, 1.51– 4.75]; P<0.001). Findings were consistent when stratified by D-dimer levels and in survival analysis accounting for death as a competing risk. On the basis of predicted probabilities from random forest, a decision tree found the combined D-dimer <1 mg/L and suPAR <11 ng/mL cutoffs, identifying 41% of patients with only 3.6% VTE probability. CONCLUSIONS: Higher suPAR was associated with incident VTE independently of D-dimer in patients hospitalized for COVID-19. Combining suPAR and D-dimer identified patients at low VTE risk. © 2022 The Authors

    RALA and RALBP1 regulate mitochondrial fission at mitosis

    No full text
    Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission(1). Equal distribution of mitochondria to daughter cells during mitosis requires fission(2). Mitotic mitochondrial fission depends upon both the relocalization of large GTPase Drp1 to the outer mitochondrial membrane and phosphorylation of S616 on Drp1 by the mitotic kinase cyclin B/Cdk1(2). We now report that these processes are mediated by the small Ras-like GTPase RalA and its effector RalBP1 (RLIP76/RLIP1/RIP1)(3,4). Specifically, the mitotic kinase Aurora A phosphorylates S194 of RalA, relocalizing it to the mitochondria, where it concentrates RalBP1 and Drp1. Furthermore, RalBP1 associates with cyclin B/Cdk1 kinase activity to foster phosphorylation of Drp1 on S616. Disrupting either RalA or RalBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B/Cdk1 converge upon RalA and RalBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function

    Role of Circulifer/Neoaliturus in the Transmission of Plant Pathogens

    No full text
    corecore