11,995 research outputs found
Approximate Sum Rules of CKM Matrix Elements from Quasi-Democratic Mass Matrices
To extract sum rules of CKM matrix elements, eigenvalue problems for
quasi-democratic mass matrices are solved in the first order perturbation
approximation with respect to small deviations from the democratic limit. Mass
spectra of up and down quark sectors and the CKM matrix are shown to have clear
and distinctive hierarchical structures. Numerical analysis shows that the
absolute values of calculated CKM matrix elements fit the experimental data
quite well. The order of the magnitude of the Jarlskog parameter is estimated
by the relation .Comment: Latex, 15 pages, no figure
Settlement rehabilitation of a 35 year old building : case study integrated with analysis and implementation
This paper presents a rehabilitation project concerning the settlement of a 35 year old building. The foundation system of the northwest wing of the building consists of strip footings and slabon-grade. Differential settlement results in significant cracking of the masonry partition walls located on the footing and hence rehabilitation of the footing is required to stabilize the foundation system. Geotechnical and structural investigations are conducted, including site borings and analytical modeling based on one-dimensional consolidation theory that is incorporated into a finite element analysis. The predictive model exhibits that the differential settlement does not cause noticeable distress for the primary structural members, whereas the continued settlement affects use of the building. Site implementation is performed with the pushpile method to terminate the continuous settlement of the foundation
Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells
The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
A particle method for reproducing the phase space of collisionless stellar
systems is described. The key idea originates in Liouville's theorem which
states that the distribution function (DF) at time t can be derived from
tracing necessary orbits back to t=0. To make this procedure feasible, a
self-consistent field (SCF) method for solving Poisson's equation is adopted to
compute the orbits of arbitrary stars. As an example, for the violent
relaxation of a uniform-density sphere, the phase-space evolution which the
current method generates is compared to that obtained with a phase-space method
for integrating the collisionless Boltzmann equation, on the assumption of
spherical symmetry. Then, excellent agreement is found between the two methods
if an optimal basis set for the SCF technique is chosen. Since this
reproduction method requires only the functional form of initial DFs but needs
no assumptions about symmetry of the system, the success in reproducing the
phase-space evolution implies that there would be no need of directly solving
the collisionless Boltzmann equation in order to access phase space even for
systems without any special symmetries. The effects of basis sets used in SCF
simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To
be published in ApJ, Oct. 1, 1997. This preprint is also available at
http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm
Secure Grouping Protocol Using a Deck of Cards
We consider a problem, which we call secure grouping, of dividing a number of
parties into some subsets (groups) in the following manner: Each party has to
know the other members of his/her group, while he/she may not know anything
about how the remaining parties are divided (except for certain public
predetermined constraints, such as the number of parties in each group). In
this paper, we construct an information-theoretically secure protocol using a
deck of physical cards to solve the problem, which is jointly executable by the
parties themselves without a trusted third party. Despite the non-triviality
and the potential usefulness of the secure grouping, our proposed protocol is
fairly simple to describe and execute. Our protocol is based on algebraic
properties of conjugate permutations. A key ingredient of our protocol is our
new techniques to apply multiplication and inverse operations to hidden
permutations (i.e., those encoded by using face-down cards), which would be of
independent interest and would have various potential applications
The cross-frequency mediation mechanism of intracortical information transactions
In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized
that "bottom-up" information processing of "content" elicits local, high
frequency (beta-gamma) oscillations, whereas "top-down" processing is
"contextual", characterized by large scale integration spanning distant
cortical regions, and implemented by slower frequency (theta-alpha)
oscillations. This corresponds to a mechanism of cortical information
transactions, where synchronization of beta-gamma oscillations between distant
cortical regions is mediated by widespread theta-alpha oscillations. It is the
aim of this paper to express this hypothesis quantitatively, in terms of a
model that will allow testing this type of information transaction mechanism.
The basic methodology used here corresponds to statistical mediation analysis,
originally developed by (Baron and Kenny 1986). We generalize the classical
mediator model to the case of multivariate complex-valued data, consisting of
the discrete Fourier transform coefficients of signals of electric neuronal
activity, at different frequencies, and at different cortical locations. The
"mediation effect" is quantified here in a novel way, as the product of "dual
frequency RV-coupling coefficients", that were introduced in (Pascual-Marqui et
al 2016, http://arxiv.org/abs/1603.05343). Relevant statistical procedures are
presented for testing the cross-frequency mediation mechanism in general, and
in particular for testing the von Stein & Sarnthein hypothesis.Comment: https://doi.org/10.1101/119362 licensed as CC-BY-NC-ND 4.0
International license: http://creativecommons.org/licenses/by-nc-nd/4.0
Concept drift detection based on anomaly analysis
© Springer International Publishing Switzerland 2014. In online machine learning, the ability to adapt to new concept quickly is highly desired. In this paper, we propose a novel concept drift detection method, which is called Anomaly Analysis Drift Detection (AADD), to improve the performance of machine learning algorithms under non-stationary environment. The proposed AADD method is based on an anomaly analysis of learner’s accuracy associate with the similarity between learners’ training domain and test data. This method first identifies whether there are conflicts between current concept and new coming data. Then the learner will incrementally learn the non conflict data, which will not decrease the accuracy of the learner on previous trained data, for concept extension. Otherwise, a new learner will be created based on the new data. Experiments illustrate that this AADD method can detect new concept quickly and learn extensional drift incrementally
Single crystal MgB2 with anisotropic superconducting properties
The discovery of superconductor in magnesium diboride MgB2 with high Tc (39
K) has raised some challenging issues; whether this new superconductor
resembles a high temperature cuprate superconductor(HTS) or a low temperature
metallic superconductor; which superconducting mechanism, a phonon- mediated
BCS or a hole superconducting mechanism or other new exotic mechanism may
account for this superconductivity; and how about its future for applications.
In order to clarify the above questions, experiments using the single crystal
sample are urgently required. Here we have first succeeded in obtaining the
single crystal of this new MgB2 superconductivity, and performed its electrical
resistance and magnetization measurements. Their experiments show that the
electronic and magnetic properties depend on the crystallographic direction.
Our results indicate that the single crystal MgB2 superconductor shows
anisotropic superconducting properties and thus can provide scientific basis
for the research of its superconducting mechanism and its applications.Comment: 7 pages pdf fil
Meta-orbital Transition in Heavy-fermion Systems: Analysis by Dynamical Mean Field Theory and Self-consistent Renormalization Theory of Orbital Fluctuations
We investigate a two-orbital Anderson lattice model with Ising orbital
intersite exchange interactions by means of dynamical mean field theory
combined with the static mean field approximation of the intersite orbital
interactions. Focusing on Ce-based heavy-fermion compounds, we examine the
orbital crossover between the two orbital states, when the total f-electron
number per site n_f is n_f ~ 1. We show that a "meta-orbital" transition, at
which the occupancy of the two orbitals changes steeply, occurs when the
hybridization between the ground-state f-electron orbital and conduction
electrons are smaller than that between the excited f-electron orbital and
conduction electrons. Near the meta-orbital critical end point, the orbital
fluctuations are enhanced, and couple with the charge fluctuations. A critical
theory of the meta-orbital fluctuations is also developed by applying the
self-consistent renormalization theory of itinerant electron magnetism to the
orbital fluctuations. The critical end point, first-order transition and
crossover are described within Gaussian approximations of orbital fluctuations.
We discuss the relevance of our results to CeAl2, CeCu2Si2, CeCu2Ge2 and the
related compounds, which all have low-lying crystalline-electric-field excited
states.Comment: 11 pages, 6 figures, J. Phys. Soc. Jpn. 79, (2010) 11471
Determination of density and concentration from fluorescent images of a gas flow
A fluorescent image analysis procedure to determine the distribution of
species concentration and density in a gas flow is proposed. The fluorescent
emission is due to the excitation of atoms/molecules of a gas that is
intercepted by an electron blade. The intensity of the fluorescent light is
proportional to the local number density of the gas. When the gas flow is a
mixture of different species, this proportionality can be exploited to extract
the contribution associated to the species from the spectral superposition
acquired by a digital camera. This yields a method that simultaneously reveals
species concentrations and mass density of the mixture. The procedure is
applied to two under-expanded sonic jets discharged into a different gas
ambient - Helium into Argon and Argon into Helium - to measure the
concentration and density distribution along the jet axis and across it. A
comparison with experimental and numerical results obtained by other authors
when observing under-expanded jets at different Mach numbers is made with the
density distribution along the axis of the jet. This density distribution
appears to be self-similar.Comment: New figures in portable .eps forma
- …
