231 research outputs found

    CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes

    Get PDF
    Redox couples based on cobalt complexes were found to be effective in regenerating both inorganic CdSe quantum dot-and organic dye-sensitizers. The hybrid sensitizer composed of CdSe QD and ruthenium sensitizer (Z907Na) dye showed a maximum power conversion efficiency of 4.76% on using cobalt(o-phen)(3)(2+/3+) as a common redox mediator.close202

    Highly phosphorescent perfect green emitting iridium(III) complex for application in OLEDs

    Get PDF
    A novel iridium complex, [bis-(2-phenylpyridine)(2-carboxy-4-dimethylaminopyridine)iridium(III)] (N984), was synthesized and characterized using spectroscopic and electrochemical methods; a solution processable OLED device incorporating the N984 complex displays electroluminescence spectra with a narrow bandwidth of 70 nm at half of its intensity, with colour coordinates of x = 0.322; y = 0.529 that are very close to those suggested by the PAL standard for a green emitter.Bolink, Henk, [email protected] ; Coronado Miralles, Eugenio, [email protected] ; Garcia Santamaria, Sonsoles Amor, [email protected]

    Panchromatic engineering for dye-sensitized solar cells

    Get PDF
    The dye-sensitized mesoscopic solar cell has been intensively investigated as a promising photovoltaic cell. Its ecological and economical fabrication processes make it attractive and credible alternative to conventional photovoltaic systems. In contrast to the latter design, the DSC approach separates tasks of light absorption and charge transport. The primary step of light absorption is performed by a sensitizer anchored to the surface of a wide band gap semiconductor. In order to reach a high conversion efficiency, the first requirement is that the sensitizer should absorb as much as possible of the incoming sunlight. Strategies for achieving panchromatic response in dye-sensitized mesoscopic solar cells are discussed

    Advances in solution-processed near-infrared light-emitting diodes

    Get PDF
    Near-infrared light-emitting diodes based on solution-processed semiconductors, such as organics, halide perovskites and colloidal quantum dots, have emerged as a viable technological platform for biomedical applications, night vision, surveillance and optical communications. The recently gained increased understanding of the relationship between materials structure and photophysical properties has enabled the design of efficient emitters leading to devices with external quantum efficiencies exceeding 20%. Despite considerable strides made, challenges remain in achieving high radiance, reducing efficiency roll-off and extending operating lifetime. This Review summarizes recent advances on emissive materials synthetic methods and device key attributes that collectively contribute to improved performance of the fabricated light-emitting devices

    Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

    Get PDF
    Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl)phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSCs. The P=O terminal group of THPPO, a Lewis base, can passivate perovskite surface defects such as undercoordinated Pb2+. Consequently, improvement of PCEs from 19.87 to 20.70% and from 5.84 to 13.31% are achieved in n−i−p PSCs and hole-transporting layer (HTL)-free PSCs, respectively

    Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte

    Get PDF
    A series of polyene-diphenylaniline based organic dyes (coded as D5, D7, D9 and D11) have been reported for the application in ionic liquid electrolyte based dye-sensitized solar cells. The effects of substitution of organic dyes on the photovoltaic performance have been investigated, which show addition of methoxy groups on the triphenylamine donor group increases short-circuit current, open-circuit voltage and photovoltaic performance. A power conversion efficiency of 6.5% under AM 1.5 sunlight at 100 mW/cm(2) has been obtained with D11 dye in combination with a binary ionic liquid electrolyte, which when subjected to accelerated testing under one sun light soaking at 60 degrees C, the efficiency remained 90% of initial efficiency. (C) 2011 Elsevier Ltd. All rights reserved
    • 

    corecore