73 research outputs found

    190 MeV Proton-Induced Symmetric and Asymmetric Fission

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Further Studies of Unusual Fission Mass Distributions using 190 MeV Protons

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440

    Elastic Scattering of 100 MeV Polarized Protons from 4-He

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440

    Reaction and proton-removal cross sections of 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, ^{12N, 13,15^{13,15}O and 17^{17}Ne on Si at 15 to 53 MeV/nucleon

    Full text link
    Excitation functions for total reaction cross sections, σR\sigma_R, were measured for the light, mainly proton-rich nuclei 6^6Li, 7^7Be, 10^{10}B, 9,10,11^{9,10,11}C, 12^{12}N, 13,15^{13,15}O, and 17^{17}Ne incident on a Si telescope at energies between 15 and 53 MeV/nucleon. The telescope served as target, energy degrader and detector. Proton-removal cross sections, σ2p\sigma_{2p} for 17^{17}Ne and σp\sigma_p for most of the other projectiles, were also measured. The strong absorption model reproduces the AA-dependence of σR\sigma_R, but not the detailed structure. Glauber multiple scattering theory and the JLM folding model provided improved descriptions of the measured σR\sigma_R values. rmsrms radii, extracted from the measured σR\sigma_R using the optical limit of Glauber theory, are in good agreement with those obtained from high energy data. One-proton removal reactions are described using an extended Glauber model, incorporating second order noneikonal corrections, realistic single particle densities, and spectroscopic factors from shell model calculations.Comment: 16 pages, 6 figure

    A Pragmatic Approach to the Continuum Spectrum in Quasifree Scattering

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Proton recoil polarization in exclusive (e,e'pp) reactions

    Full text link
    The general formalism of nucleon recoil polarization in the (e,eNN{\vec e},e'{\vec N}N) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16^{16}O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.Comment: 12 pages, 6 figure

    Energy Dependence of the NN t-matrix in the Optical Potential for Elastic Nucleon-Nucleus Scattering

    Get PDF
    The influence of the energy dependence of the free NN t-matrix on the optical potential of nucleon-nucleus elastic scattering is investigated within the context of a full-folding model based on the impulse approximation. The treatment of the pole structure of the NN t-matrix, which has to be taken into account when integrating to negative energies is described in detail. We calculate proton-nucleus elastic scattering observables for 16^{16}O, 40^{40}Ca, and 208^{208}Pb between 65 and 200 MeV laboratory energy and study the effect of the energy dependence of the NN t-matrix. We compare this result with experiment and with calculations where the center-of-mass energy of the NN t-matrix is fixed at half the projectile energy. It is found that around 200 MeV the fixed energy approximation is a very good representation of the full calculation, however deviations occur when going to lower energies (65 MeV).Comment: 11 pages (revtex), 6 postscript figure

    Short-range and tensor correlations in the 16^{16}O(e,e'pn) reaction

    Get PDF
    The cross sections for electron induced two-nucleon knockout reactions are evaluated for the example of the 16^{16}O(e,e'pn)14^{14}N reaction leading to discrete states in the residual nucleus 14^{14}N. These calculations account for the effects of nucleon-nucleon correlations and include the contributions of two-body meson exchange currents as the pion seagull, pion in flight and the isobar current contribution. The effects of short-range as well as tensor correlations are calculated within the framework of the coupled cluster method employing the Argonne V14 potential as a model for a realistic nucleon-nucleon interaction. The relative importance of correlation effects as compared to the contribution of the meson exchange currents depends on the final state of the residual nucleus. The cross section leading to specific states, like e.g. the ground state of 14^{14}N, is rather sensitive to the details of the correlated wave function.Comment: 16 pages, 9 figures include

    Two-proton overlap functions in the Jastrow correlation method and cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction

    Full text link
    Using the relationship between the two-particle overlap functions (TOF's) and the two-body density matrix (TDM), the TOF's for the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction are calculated on the basis of a TDM obtained within the Jastrow correlation method. The main contributions of the removal of 1S0^1S_0 and 3P1^3P_1 pppp pairs from 16^{16}O are considered in the calculation of the cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction using the Jastrow TOF's which include short-range correlations (SRC). The results are compared with the cross sections calculated with different theoretical treatments of the TOF's.Comment: 10 pages, 8 figures, ReVTeX
    corecore