478 research outputs found

    Spectrum of Congenital Anomalies among Surgical Patients at a Tertiary Care Centre over 4 Years

    Get PDF
    Introduction. Congenital anomalies are important causes of childhood death, chronic illness, and disability in many countries. Congenital malformations are rapidly emerging as one of the major worldwide problems. Aim. To study the percentage of various congenital anomalies among the patients admitted in Department of Pediatric Surgery at a tertiary care centre over a period of four years from 2011 to 2015 in our centre. Results. Neural tube defects were found to be the most common anomalies in 24.3% of the children admitted. Other common anomalies were anorectal malformation (20.7%), tracheoesophageal fistula (20%), and intestinal obstruction (14.84%). Majority (60.5%) of the patients were males. Conclusion. Congenital malformations are rapidly emerging as one of the major worldwide problems as they can result in long-term disability, which may have significant impacts on individuals, families, health-care systems, and societies. Regular antenatal visits and prenatal diagnosis are recommended for prevention, early intervention, and even planned termination, when needed

    Congenital Anterior Urethral Diverticulum in Children: A Case Report and Review

    Get PDF
    Congenital anterior urethral diverticulum (CAUD) is an uncommon condition in children. We describe 2 patients of CAUD who presented with ventral penile swelling; in one, the site of swelling was just proximal to corona which is quite rare. The diagnosis was made on USG and MCU. Both patients had normal renal function. Open diverticulectomy and primary repair was done in both patients

    Meta-lay theories of scientific potential drive underrepresented students’ sense of belonging to science, technology, engineering, and mathematics (STEM)

    Get PDF
    The current research investigates people’s perceptions of others’ lay theories (or mindsets), an understudied construct that we call meta-lay theories. Six studies examine whether underrepresented students’ meta-lay theories influence their sense of belonging to science, technology, engineering, and math (STEM). The studies tested whether underrepresented students who perceive their faculty as believing most students have high scientific aptitude (a universal metatheory) would report a stronger sense of belonging to STEM than those who think their faculty believe that not everyone has high scientific aptitude (a nonuniversal metatheory). Women Ph.D. candidates in STEM fields who held universal rather than nonuniversal metatheories felt greater sense of belonging to their field, both when metatheories were measured (Study 1) and manipulated (Study 2). Undergraduates who held more universal metatheories reported a higher sense of belonging to STEM (Studies 3 and 4) and earned higher final course grades (Study 3). Experimental manipulations depicting a professor communicating the universal lay theory eliminated the difference between African American and European American students’ attraction to a STEM course (Study 5) and between women and men’s sense of belonging to STEM (Study 6). Mini meta-analyses indicated that the universal metatheory increases underrepresented students’ sense of belonging to STEM, reduces the extent of social identity threat they experience, and reduces their perception of faculty as endorsing stereotypes. Across different underrepresented groups, types of institutions, areas of STEM, and points in the STEM pipeline, students’ metaperceptions of faculty’s lay theories about scientific aptitude influence their sense of belonging to STEM

    The surged faradic stimulation to the pelvic floor muscles as an adjunct to the medical management in children with rectal prolapse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the role of the surged faradic stimulation to the pelvic floor muscles as an adjunct to the conservative management in the children of idiopathic rectal prolapse</p> <p>Methods</p> <p><it>Study design</it>: Prospective</p> <p><it>Setting</it>: Pediatric Surgery Department, Pt BD Sharma, Post Graduate Institute of Medical Sciences, Rohtak</p> <p><it>Subjects</it>: 47 consecutive children with idiopathic rectal prolapse attending the Pediatric Surgery out patient department from July 2005 to June 2006</p> <p><it>Methodology</it>: The information pertaining to duration and the extent of rectal prolapse, predisposing or associated medical conditions, results of local clinical examination were noted. Surged faradic stimulation using modified intraluminal rectal probe, was given on the alternate days. The conventional conservative medical management was also continued. The extent of relief and the number of the sittings of faradic stimulation required were noted at various stages of follow-ups</p> <p><it>Statistical Methods</it>: Mean values between those completely cured and others; poor responders and others were compared with t-test and proportions were compared with Chi square test. The p-value < 0.05 was considered statistically significant.</p> <p>Results</p> <p>The mean number of sittings in the completely cured group (n = <b>28</b>(64%)) was (12.4 ± 7.8) and was comparable with very poor responder (n = 6(13%). There was higher percentage of relief (76%) at the first follow up (at 15 days) in completely cured Vs other (37%) and also the poor responders showed (20%) Vs other (68%) and was statistically significant.</p> <p>Conclusion</p> <p>With use of faradic stimulation, even the long-standing rectal prolapse can be fully cured. The follow up visit at 2 weeks is very important to gauge the likely success of this modality in treatment of the patients with rectal prolapse. Those showing poor response at this stage may require alternative treatment or take a long time to get cured</p

    Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta)

    Get PDF
    Time is a valuable but limited resource, and animals’ survival depends on their ability to carefully manage the amount of time they allocate to each daily activity. While existing research has examined the ecological factors affecting animals’ activity budgets, the impact of anthropogenic factors on urban dwelling animals’ time budgets remains understudied. Here we collected data through focal animal sampling from three groups of rhesus macaques in Northern India to examine whether interactions with humans decrease macaques’ resting and social time (time constraints hypothesis), or whether, by contrast, foraging on anthropogenic food, that is potentially high in calories, leads macaques to spend more time resting and in social interactions (free time hypothesis). We found that macaques who interacted more frequently with people spent significantly less time resting and grooming, supporting the time constraints hypothesis. We argue that these time constraints are likely caused by the unpredictability of human behavior.National Science Foundatio

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    • 

    corecore