39 research outputs found
Hypoxia induces ZEB2 in podocytes:Implications in the pathogenesis of proteinuria
The glomerular filtration barrier (GFB) plays a critical role in ensuing protein free urine. The integrity of the GFB is compromised during hypoxia that prevails during extreme physiological conditions. However, the mechanism by which glomerular permselectivity is compromised during hypoxia remains enigmatic. Rats exposed to hypoxia showed a decreased glomerular filtration rate, podocyte foot‐processes effacement, and proteinuria. Accumulation of hypoxia‐inducible factor‐1α (HIF1α) in podocytes resulted in elevated expression of zinc finger E‐box binding homeobox 2 (ZEB2) and decreased expression of E‐ and P‐cadherin. We also demonstrated that HIF1α binds to hypoxia response element localized in the ZEB2 promoter. Furthermore, HIF1α also induced the expression of ZEB2‐natural antisense transcript, which is known to increase the efficiency of ZEB2 translation. Ectopic expression of ZEB2 induced loss of E‐ and P‐cadherin and is associated with enhanced motility of podocytes during hypoxic conditions. ZEB2 knockdown abrogated hypoxia‐induced decrease in podocyte permselectivity. This study suggests that hypoxia leads to activation of HIF1α–ZEB2 axis, resulting in podocyte injury and poor renal outcome.Hypoxia induces hypoxia‐inducible factor‐1α (HIF1α) and zinc finger E‐box binding homeobox 2 (ZEB2) in podocytes. HIF1α induces the expression of ZEB2 in podocytes. ZEB2 overexpression ensures podocyte foot‐processes effacement and proteinuria.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147747/1/jcp27387_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147747/2/jcp27387.pd
GSI-I (Z-LLNle-CHO) inhibits γ-secretase and the proteosome to trigger cell death in precursor-B acute lymphoblastic leukemia
Gamma secretase inhibitors (GSIs) comprise a growing class of compounds that interfere with the membrane-bound Notch signaling protein and its downstream intra-nuclear transcriptional targets. As GSI-I (Z-LLNle-CHO) is also a derivative of a widely used proteosome inhibitor MG-132, we hypothesized that this compound might be active in precursor-B acute lymphoblastic leukemia (ALL) cell lines and patient samples. We found that GSI-I treatment of precursor-B ALL blasts induced apoptotic cell death within 18–24 h. With confirmation using RNA and protein analyses, GSI-I blocked nuclear accumulation of cleaved Notch1 and Notch2, and inhibited Notch targets Hey2 and Myc. Microarray analyses of 207 children with high-risk precursor-B ALL demonstrate that Notch pathway expression is a common feature of these neoplasms. However, microarray studies also implicated additional transcriptional targets in GSI-I-dependent cell death, including genes in the unfolded protein response, nuclear factor-κB and p53 pathways. Z-LLNle-CHO blocks both γ-secretase and proteosome activity, inducing more robust cell death in precursor-B ALL cells than either proteosome-selective or γ-secretase-selective inhibitors alone. Using Z-LLNle-CHO in a nonobese diabetes/severe combined immunodeficiency (NOD/SCID) precursor-B ALL xenograft model, we found that GSI-I alone delayed or prevented engraftment of B-lymphoblasts in 50% of the animals comprising the experimental group, suggesting that this compound is worthy of additional testing
Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia
<p>Abstract</p> <p>Background</p> <p>The molecular changes <it>in vivo </it>in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response.</p> <p>Methods</p> <p>The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting.</p> <p>Results</p> <p>Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells.</p> <p>Conclusion</p> <p>Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy response. Therapy-induced gene expression reflects the complex biological processes involved in clinical cancer cell eradication and should be explored for future enhancement of therapy.</p
Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL
Notch signaling as a therapeutic target for breast cancer treatment?
Aberrant Notch signaling can induce mammary gland carcinoma in transgenic mice, and high expressions of Notch receptors and ligands have been linked to poor clinical outcomes in human patients with breast cancer. This suggests that inhibition of Notch signaling may be beneficial for breast cancer treatment. In this review, we critically evaluate the evidence that supports or challenges the hypothesis that inhibition of Notch signaling would be advantageous in breast cancer management. We find that there are many remaining uncertainties that must be addressed experimentally if we are to exploit inhibition of Notch signaling as a treatment approach in breast cancer. Nonetheless, Notch inhibition, in combination with other therapies, is a promising avenue for future management of breast cancer. Furthermore, since aberrant Notch4 activity can induce mammary gland carcinoma in the absence of RBPjκ, a better understanding of the components of RBPjκ-independent oncogenic Notch signaling pathways and their contribution to Notch-induced tumorigenesis would facilitate the deployment of Notch inhibition strategies for effective treatment of breast cancer