52 research outputs found
Efficacy and safety of artemisinin-based antimalarial in the treatment of uncomplicated malaria in children in southern Tanzania
BACKGROUND\ud
\ud
Tanzania switched the antimalarial first line to sulphadoxine-pyrimethamine (SP) in 2001 from ineffective chloroquine (CQ). By 2003 higher levels of SP resistance were recorded, prompting an urgent need for replacing the first line drug with ACT, as currently recommended by the World Health Organization. Despite this recommendation country-specific evidence-based data to support efficacy and safety profile of ACT is still limited. A study on the efficacy and safety of artesunate plus amodiaquine (AS+AQ) and artemether plus lumefantrine (AL)(Coartem) was carried out in 2004 with the view of supporting the National Malaria Control Programme in the review of the policy in mainland Tanzania.\ud
\ud
METHODS\ud
\ud
An in vivo efficacy study was conducted at Ipinda and Mlimba health facilities between May and November 2004. The study recruited children aged 6-59 months presenting with symptoms of uncomplicated malaria, history of fever or an axillary temperature > or =37.5 degrees C; mono infection with Pasmodium falciparum (2,000-200,000 parasites/microl). Patients were randomized to received either SP or amodiaquine monotherapy or treated with standard doses of AS+AQ in Mlimba and Coartem in Kyela and followed-up for 28 days to assess treatment responses. This study reports results of the combination therapies.\ud
\ud
RESULTS\ud
\ud
A total of 157 children (76 in Mlimba and 99 in Kyela) who were enrolled in to the study and treated with either AL or AS+AQ were successfully followed-up. Both combinations were tolerated and effected rapid fever and parasite clearance. The crude ACPRs were 80 (87%) and 41 (63%) for AL and AS+AQ respectively. However, after PCR adjustments the corresponding figures raised to 100% (n = 86) and 93.8% (n = 45) in AL and AS+AQ groups, respectively. The mean haemoglobin improved moderately from day 0 to day 28 by 1 g/dl in AL and 0.4 g/dl in AS+AQ treatment group and was statistically significant (p < 0.001 both).\ud
\ud
CONCLUSION\ud
\ud
These findings provide substantial evidence that AL is highly efficacious in areas of high resistance of SP and supported the country's decision to switch from SP monotherapy to AL
Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania
Artemisinin-based combination therapies (ACTs) are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E) in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance
Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.
BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs
Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi
<b>Background:</b> Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures.
<BR/>
<b>Methods:</b> Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters.
<BR/>
<b>Results:</b> Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting.
<BR/>
<b>Conclusions:</b> The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum
Extensive dynamics of Plasmodium falciparum densities, stages and genotyping profiles
<p>Abstract</p> <p>Background</p> <p>Individuals living in areas of high malaria transmission often have different <it>Plasmodium falciparum </it>clones detected in the peripheral blood over time. The aim of this study was to assess the dynamics of asymptomatic <it>P. falciparum </it>infections in a few hours intervals.</p> <p>Methods</p> <p>Capillary blood samples were collected 6-hourly during five days from asymptomatic children in a highly endemic area in Tanzania. Parasite densities and maturation stages were investigated by light microscopy. Types and number of clones were analysed by PCR based genotyping of the polymorphic merozoite surface proteins 1 and 2 genes. Results: Parasite densities and maturation stages fluctuated 48-hourly with a gradual shift into more mature forms. Various genotyping patterns were observed in repeated samples over five days with only few samples with identical profiles. Up to six alleles differed in samples collected six hours apart in the same individual.</p> <p>Conclusion</p> <p>This detailed assessment highlights the extensive within-host dynamics of <it>P. falciparum </it>populations and the limitations of single blood samples to determine parasite densities, stages and genotyping profiles in a malaria infected individual.</p
Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.
Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered
The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination
BACKGROUND\ud
\ud
Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud
\ud
RESULTS\ud
\ud
The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud
\ud
CONCLUSION\ud
\ud
The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high
Drug coverage in treatment of malaria and the consequences for resistance evolution - evidence from the use of sulphadoxine/pyrimethamine
BACKGROUND\ud
\ud
It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes.\ud
\ud
METHODS\ud
\ud
To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared.\ud
\ud
RESULTS\ud
\ud
The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP.\ud
\ud
CONCLUSION\ud
\ud
The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy
A Randomised Controlled Trial to Assess the Efficacy of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Falciparum Malaria in Peru
Background. Multi-drug resistant falciparum malaria is an important health problem in the Peruvian Amazon region. We carried out a randomised open label clinical trial comparing mefloquine-artesunate, the current first line treatment in this region, with dihydroartemisinin-piperaquine. Methods and Findings. Between July 2003 and July 2005, 522 patients with P. falciparum uncomplicated malaria were recruited, randomized (260 with mefloquine-artesunate and 262 with dihydroartemisinin-piperaquine), treated and followed up for 63 days. PCR-adjusted adequate clinical and parasitological response, estimated by Kaplan Meier survival and Per Protocol analysis, was extremely high for both drugs (99.6% for mefloquine-artesunate and 98.4% and for dihydroartemisinin-piperaquine) (RR: 0.99, 95%CI [0.97-1.01], Fisher Exact p=0.21). All recrudescences were late parasitological failures. Overall, gametocytes were cleared faster in the mefloquine-artesunate group (28 vs 35 days) and new gametocytes tended to appear more frequently in patients treated with dihydroartemisinin-piperaquine (day 7: 8 ( 3.6%) vs 2 (0.9%), RR: 3.84, 95%CI [0.82-17.87]). Adverse events such as anxiety and insomnia were significantly more frequent in the mefloquine-artesunate group, both in adults and children. Conclusion. Dihydroartemisinin-piperaquine is as effective as mefloquine-artesunate in treating uncomplicated P. falciparum malaria but it is better tolerated and more affordable than mefloquine-artesunate (US18.65 on the local market). Therefore, it should be considered as a potential candidate for the first line treatment of P. falciparum malaria in Peru. Trial Registration. ClinicalTrials.gov NCT00373607 [http://www.clinicaltrials.gov/ct/show/NCT00373607]
Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza, north-western Tanzania
\ud
\ud
Drug resistance to anti-malarials is a major public health problem worldwide. This study aimed at establishing the efficacy of artemether-lumefantrine (ACT) in Igombe-Mwanza, north-western Tanzania after a few years of ACT use, and establish the prevalence of mutations in key targets for artemisinin, chloroquine and sulphadoxine/pyrimetamine (SP) drugs. A prospective single cohort study was conducted at Igombe health centre using artemether-lumefantrine combination therapy between February 2010 and March 2011. The follow-up period was 28 days and outcome measures were according to WHO guidelines. Blood was collected on Whatman filter paper for DNA analysis. DNA extraction was done using TRIS-EDTA method, and mutations in Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Pfatp6 were detected using PCR-RFLP methods established previously. A total of 103 patients completed the 28 days follow-up. The mean haemoglobin was 8.9 g/dl (range 5.0 to 14.5 g/dl) and mean parasite density was 5,608 parasites/μl. Average parasite clearance time was 34.7 hours and all patients cleared the parasites by day 3. There was no early treatment failure in this study. Late clinical failure was seen in three (2.9%) patients and late parasitological failure (LPF) was seen in two (1.9%). PCR-corrected LPF was 1% and adequate clinical and parasitological response was 96%. The majority of parasites have wild type alleles on pfcrt 76 and pfmdr1 86 positions being 87.8% and 93.7% respectively. Mutant parasites predominated at pfdhfr gene at the main three positions 108, 51 and 59 with prevalence of 94.8%, 75.3% and 82.5% respectively. Post-treatment parasites had more wild types of pfdhps at position 437 and 540 than pre-treatment parasites. No mutation was seen in pfatp6 769 in re-infecting or recrudescing parasites. The efficacy of artemether-lumefantrine for treatment of uncomplicated malaria is still high in the study area although the rate of re-infection is higher than previously reported. Parasite clearance after 48 hours was lower compared to previous studies. The prevalence of wild type allele pfcrt 76 K and pfmdr1 86 N was high in the study area while markers for SP resistance is still high. Artemether-lumefantrine may be selecting for wild type alleles on both positions (437 and 540) of pfdhps
- …