3,604 research outputs found

    Ion trap transducers for quantum electromechanical oscillators

    Get PDF
    An enduring challenge for contemporary physics is to experimentally observe and control quantum behavior in macroscopic systems. We show that a single trapped atomic ion could be used to probe the quantum nature of a mesoscopic mechanical oscillator precooled to 4K, and furthermore, to cool the oscillator with high efficiency to its quantum ground state. The proposed experiment could be performed using currently available technology.Comment: 4 pages, 2 figure

    Planar Ion Trap Geometry for Microfabrication

    Full text link
    We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers. PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure

    Scaling and Suppression of Anomalous Heating in Ion Traps

    Get PDF
    We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional heating of trapped ions stems from microscopic noisy potentials on the electrodes that are thermally driven. These observations are relevant to decoherence in quantum information processing schemes based on trapped ions and perhaps other charge-based quantum systems
    • …
    corecore