593 research outputs found

    Secure Grouping Protocol Using a Deck of Cards

    Full text link
    We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications

    Mott gap excitations in twin-free YBa2Cu3O7-d (Tc = 93 K) studied by RIXS

    Get PDF
    Mott gap excitations in the high-Tc superconductor of the optimal doped YBa2Cu3O7-d (Tc = 93 K) have been studied by the resonant inelastic x-ray scattering method. Anisotropic spectra in the ab-plane are observed in a twin-free crystal. The excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the b* direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of the momentum transfer. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed spectra by taking the different parameters of the on-site Coulomb energy. The fact of the Mott gap of the CuO chain site is much smaller than that of CuO2 plane site is observed for the first time

    Momentum Dependence of Charge Excitations in the Electron-Doped Superconductor Nd1.85Ce0.15CuO4: a RIXS Study

    Get PDF
    We report a resonant inelastic x-ray scattering (RIXS) study of charge excitations in the electron-doped high-Tc superconductor Nd1.85Ce0.15CuO4. The intraband and interband excitations across the Fermi energy are separated for the first time by tuning the experimental conditions properly to measure charge excitations at low energy. A dispersion relation with q-dependent width emerges clearly in the intraband excitation, while the intensity of the interband excitation is concentrated around 2 eV near the zone center. The experimental results are consistent with theoretical calculation of the RIXS spectra based on the Hubbard model

    Momentum Dependent Charge Excitations of Two-Leg Ladder: Resonant Inelastic X-ray Scattering of (La,Sr,Ca)14Cu24O41

    Full text link
    Momentum dependent charge excitations of a two-leg ladder are investigated by resonant inelastic x-ray scattering of (La,Sr,Ca)14Cu24O41. In contrast to the case of a square lattice, momentum dependence of the Mott gap excitation of the ladder exhibits little change upon hole-doping, indicating the formation of hole pairs. Theoretical calculation based on a Hubbard model qualitatively explains this feature. In addition, experimental data shows intraband excitation as continuum intensity below the Mott gap and it appears at all the momentum transfers simultaneously. The intensity of the intraband excitation is proportional to the hole concentration of the ladder, which is consistent with optical conductivity measurements.Comment: 7 page

    Charge excitations associated with charge stripe order in the 214-type nickelate and superconducting cuprate

    Get PDF
    Charge excitations were studied for stipe-ordered 214 compounds, La5/3_{5/3}Sr1/3_{1/3}NiO4_{4} and 1/8-doped La2_{2}(Ba, Sr)x_{x}CuO4_{4} using resonant inelastic x-ray scattering in hard x-ray regime. We have observed charge excitations at the energy transfer of 1 eV with the momentum transfer corresponding to the charge stripe spatial period both for the diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can be interpreted as a collective stripe excitation or charge excitonic mode to a stripe-related in-gap state.Comment: 5 pages, 4 figure

    Resonant inelastic x-ray scattering study of hole-doped manganites La1-xSrxMnO3 (x=0.2 and 0.4)

    Get PDF
    Electronic excitations near the Fermi energy in the hole doped manganese oxides (La1-xSrxMnO3, x=0.2 and 0.4) have been elucidated by using the resonant inelastic x-ray scattering (RIXS) method. A doping effect in the strongly correlated electron systems has been observed for the first time. The scattering spectra show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the energy of the spectral weight shifts toward lower energies. The excitation spectra show little change in the momentum space as is in undoped LaMnO3, but the scattering intensities in the low energy excitations of x=0.2 are anisotropic as well as temperature dependent, which indicates a reminiscence of the orbital nature

    High-energy spin and charge excitations in electron-doped copper oxide superconductors

    Get PDF
    The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {\Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.Comment: 20 page
    corecore