11 research outputs found

    Comparison of corneal morphologic parameters and high order aberrations in keratoconus and normal eyes

    Get PDF
    The aim of this study is evaluating the influence of corneal geometry in the optical system’s aberrations, and its usefulness as diagnostic criterion for keratoconus.159 normal eyes (normal group, mean age 37.8 ± 11.6 years) and 292 eyes with the diagnosis of keratoconus (keratoconus group, mean age 42.2 ± 17.6 years) were included in this study. All eyes received a comprehensive ophthalmologic examination. A virtual 3D model of each eye was made using CAD software and different anatomical parameters related with surface and volume were measured. Statistically significant differences were found for all anatomical parameters (all p < 0.001). AUROC analysis showed that all parameters reached values above 0.7, with the exception of the total corneal surface area (TCSAA-S). In conclusion, the methodology explained in this research, that bases in anatomical parameters obtained from a virtual corneal model, allow to analyze the diagnostic value of corneal geometry correlation with optical aberrations in keratoconus pathology.This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS), reference number RD16/0008/0012, financed by the Carlos III Health Institute–General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER)

    Femtosecond laser cataract surgery.

    Get PDF
    Femtosecond laser (FSL) cataract surgery is in its infancy but is rapidly gaining popularity due to the improved consistency and predictability for corneal incisions and anterior capsulorhexis. It enables subsequently less phacoemulsification energy and time to be employed, which has gains in terms of reduced corneal oedema. In addition, the FSL allows better circularity of the anterior capsulotomy, capsule overlap, intraocular lens (IOL) placement and centration of the IOL. These advantages have resulted in improved visual and refractive outcomes in the short term. Complication rates are low which reduce with surgeon experience. This review article focuses on the Alcon LenSx system

    The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn?

    No full text
    Femtosecond laser-assisted cataract surgery (FLACS) represents a potential paradigm shift in cataract surgery, but it is not without controversy. Advocates of the technology herald FLACS as a revolution that promises superior outcomes and an improved safety profile for patients. Conversely, detractors point to the large financial costs involved and claim that similar results are achievable with conventional small-incision phacoemulsification. This review provides a balanced and comprehensive account of the development of FLACS since its inception. It explains the physiology and mechanics underlying the technology, and critically reviews the outcomes and implications of initial studies. The benefits and limitations of using femtosecond laser accuracy to create corneal incisions, anterior capsulotomy, and lens fragmentation are explored, with reference to the main platforms, which currently offer FLACS. Economic considerations are discussed, in addition to the practicalities associated with the implementation of FLACS in a healthcare setting. The influence on surgical training and skills is considered and possible future applications of the technology introduced. While in its infancy, FLACS sets out the exciting possibility of a new level of precision in cataract surgery. However, further work in the form of large scale, phase 3 randomised controlled trials are required to demonstrate whether its theoretical benefits are significant in practice and worthy of the necessary huge financial investment and system overhaul. Whether it gains widespread acceptance is likely to be influenced by a complex interplay of scientific and socio-economic factors in years to come
    corecore