311 research outputs found
A framework to evaluate hydrogen as fuel in international shipping
The shipping industry is today challenged by tighter regulations on efficiency, air pollution and the need to reduce its greenhouse gas emissions. The decarbonisation of the global energy system could be achieved with the use of alternative energy and fuels, and so a widespread switch to the adoption of alternative fuel in shipping could be experienced within the coming decades. Lately, many scenarios of alternative fuels in shipping have been investigated. Among the options of alternative fuels with different propulsion technologies, hydrogen with marine fuel cells (FCs) represent an example of such an alternative fuel. This paper proposes a framework to examine a possible transition path for the use of hydrogen in shipping within the context of decarbonisation of the wider global energy system. The framework is based on a soft- linking the global integrated assessment model (TIAM-UCL) and the shipping model (GloTraM). Initial results from this work-in-progress describe the trajectories of hydrogen prices, the characteristic of the hydrogen fleet and the consequences for shipping CO2 emissions, the hydrogen infrastructure requirements, the use of hydrogen in other sectors, and the consequences for global energy system CO2 emissions
Emissions budgets for shipping in a 2°C and a 4°C global warming scenario, and implications for operational efficiency
To achieve the widely accepted goal of keeping global temperature rise below 2°C above pre-industrial levels, greenhouse gas emissions must reduce drastically over the coming decades. Under this premise, the assumption that the shipping industry realises the same proportionate CO2 emission reductions as all other sectors on average has strong implications. This paper begins by considering an appropriate global CO2 emissions budget associated with a temperature rise of 2°C. Next, a range of future demand scenarios for international transport shipping are presented. Meeting the demand in any of the scenarios, while remaining within the emissions budget, requires stringent increases in overall operational efficiency. Different emissions and efficiency trajectories – with efficiency expressed in terms of the Energy Efficiency Operational Indicator (EEOI) – in line with the 2°C target are analysed. The potential short and long term levers of operational efficiency are explored
CO2 Targets, Trajectories and Trends for International Shipping
The Shipping in Changing Climates (SCC) project connects the latest climate change science with knowledge, understanding and models of the shipping sector in a whole systems approach. It seeks to explore the potential to cut CO2 through the use of technical and operational changes in shipping and to understand how the sector might transition to a more resilient and low-carbon future; it also seeks to explore different climate change scenarios and related food and fuel security issues to gain an understanding of the direct and indirect impacts of climate change on the shipping sector. These scenarios can be used to build evidence and understanding around the range of potential future directions that the shipping industry may take. The RCUK Energy funded project brings together researchers from UCL (Energy Institute, Mechanical Engineering and Laws), Manchester, Southampton, Newcastle and Strathclyde, in close collaboration with a core industry stakeholder group of Shell, Lloyd’s Register, Rolls Royce, BMT and Maritime Strategies International, but drawing on the expertise and connections of over 35 companies and organisations worldwide. This paper is non-peer- reviewed and represents the collective opinions of the authors and should not be assumed to represent the views of all the researchers across the project or the project’s industry partners and their organisations
The potential of low-cost 3D imaging technologies for forestry applications: Setting a research agenda for low-cost remote sensing inventory tasks
Limitations with benchmark light detection and ranging (LiDAR) technologies in forestry have prompted the exploration of handheld or wearable low-cost 3D sensors (<2000 USD). These sensors are now being integrated into consumer devices, such as the Apple iPad Pro 2020. This study was aimed at determining future research recommendations to promote the adoption of terrestrial low-cost technologies within forest measurement tasks. We reviewed the current literature surrounding the application of low-cost 3D remote sensing (RS) technologies. We also surveyed forestry professionals to determine what inventory metrics were considered important and/or difficult to capture using conventional methods. The current research focus regarding inventory metrics captured by low-cost sensors aligns with the metrics identified as important by survey respondents. Based on the literature review and survey, a suite of research directions are proposed to democratise the access to and development of low-cost 3D for forestry: (1) the development of methods for integrating standalone colour and depth (RGB-D) sensors into handheld or wearable devices; (2) the development of a sensor-agnostic method for determining the optimal capture procedures with low-cost RS technologies in forestry settings; (3) the development of simultaneous localisation and mapping (SLAM) algorithms designed for forestry environments; and (4) the exploration of plot-scale forestry captures that utilise low-cost devices at both terrestrial and airborne scales
How Low Can We Go? The Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving Well Below 2 °C
Pledges embodied in the nationally determined contributions (NDCs) represent an interim step from a global “no policy” path towards an optimal long-term global mitigation path. However, the goals of the Paris Agreement highlight that current pledges are insufficient. It is, therefore, necessary to ratchet-up parties’ future mitigation pledges in the near-term. The ambitious goals of remaining well below 2 °C and pursuing reductions towards 1.5 °C mean that any delay in ratcheting-up commitments could be extremely costly or may even make the targets unachievable. In this chapter, we consider the impacts of delaying ratcheting until 2030 on global emissions trajectories towards 2 °C and 1.5 °C, and the role of offsets via negative emissions technologies (NETs). The analysis suggests that delaying action makes pursuing the 1.5 °C goal especially difficult without extremely high levels of negative emissions technologies (NETs), such as carbon capture and storage combined with bioenergy (BECCS). Depending on the availability of biomass, other NETs beyond BECCS will be required. Policymakers must also realise that the outlook for fossil fuels are closely linked to the prospects for NETs. If NETs cannot be scaled, the levels of fossil fuels suggested in this analysis are not compatible with the Paris Agreement goals i.e. there are risks of lock-in to a high fossil future. Decision makers must, therefore, comprehend fully the risks of different strategies
CO2 abatement goals for international shipping
The Paris Agreement, which entered into force in 2016, sets the ambitious climate change mitigation goal of limiting the global temperature increase to below 2°C and ideally 1.5°C. This puts a severe constraint on the remaining global GHG emissions budget. While international shipping is also a contributor to anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris Agreement. This article discusses how a share of a global CO2 budget over the twenty-first century could be apportioned to international shipping, and, using a range of future trade scenarios, explores the requisite cuts to the CO2 intensity of shipping. The results demonstrate that, under a wide range of assumptions, existing short-term levers of efficiency must be urgently exploited to achieve mitigation commensurate with that required from the rest of the economy, with virtually full decarbonization of international shipping required as early as before mid-century
Recommended from our members
The Emotional Word-Emotional Face Stroop task in the ABCD study: Psychometric validation and associations with measures of cognition and psychopathology
Characterizing the interactions among attention, cognitive control, and emotion during adolescence may provide important insights into why this critical developmental period coincides with a dramatic increase in risk for psychopathology. However, it has proven challenging to develop a single neurobehavioral task that simultaneously engages and differentially measures these diverse domains. In the current study, we describe properties of performance on the Emotional Word-Emotional Face Stroop (EWEFS) task in the Adolescent Brain Cognitive Development (ABCD) Study, a task that allows researchers to concurrently measure processing speed/attentional vigilance (i.e., performance on congruent trials), inhibitory control (i.e., Stroop interference effect), and emotional information processing (i.e., difference in performance on trials with happy as compared to angry distracting faces). We first demonstrate that the task manipulations worked as designed and that Stroop performance is associated with multiple cognitive constructs derived from different measures at a prior time point. We then show that Stroop metrics tapping these three domains are preferentially associated with aspects of externalizing psychopathology and inattention. These results highlight the potential of the EWEFS task to help elucidate the longitudinal dynamics of attention, inhibitory control, and emotion across adolescent development, dynamics which may be altered by level of psychopathology
- …