592 research outputs found

    Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD

    Full text link
    Extending our previous work in the strictly parabolic case, we show that a linearly unstable Lax-type viscous shock solution of a general quasilinear hyperbolic--parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1H3L^1\cap H^3 perturbations, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p

    Assessment of different urban traffic control strategy impacts on vehicle emissions

    Get PDF
    This paper investigates the influence of traffic signal control strategy on vehicle emissions, vehicle journey time and total throughput flow within a single isolated four-armed junction. Two pre-timed signal plans are considered, one with two-stages involving permissive-only opposing turns and the other with four-stages which has no conflicting traffic. Additionally, the increase in efficiency by utilising actuated signal timing where green time is re-optimised as flow values vary is investigated. A microscopic traffic simulation model is used to model flows and AIRE (Analysis of Instantaneous Road Emissions) microscopic emissions model is utilised to out- put emission levels from the flow data. A simple junction model shows that the two-stage signal plan is more efficient in both emis- sions and journey time. However, as the level of opposed turning vehicles and conflicting movement increases, the two-stage model moves to being the inferior signal plan choice and the four-stage plan outputs fewer emissions than the two-stage plan. A real-world example of a four-armed junction has been used in this study and from the traffic survey data and existing junction layout; it is rec- ommended that a two-stage plan is used as it produces lower amounts of emissions and shorter journey times compared to a four-stage plan. The results also show that nitrogen oxides (NOx) are the most sensitive to changes in flow followed by carbon dioxide (CO2), Black Carbon and then particulate matter (PM10)

    Impact of traffic management on black carbon emissions: a microsimulation study

    Get PDF
    This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project

    Environmental impact of combined ITS traffic management strategies

    Get PDF
    Transport was responsible for 20% of the total greenhouse gas emissions in Europe during 2011 (European Environmental Agency 2013) with road transport being the key contributor. To tackle this, targets have been established in Europe and worldwide to curb transport emissions. This poses a significant challenge on Local Government and transport operators who need to identify a set of effective measures to reduce the environmental impact of road transport and at the same time keep the traffic smooth. Of the road transport pollutants, this paper considers NOx, CO2 and black carbon (BC). A particular focus is put on black carbon, which is formed through incomplete combustion of carboneous materials, as it has a significant impact on the Earth’s climate system. It absorbs solar radiation, influences cloud processes, and alters the melting of snow and ice cover (Bond et al. 2013). BC also causes serious health concerns: black carbon is associated with asthma and other respiratory problems, heart attacks and lung cancer (Sharma 2010; United States Environmental Protection Agency 2012). Since BC emissions are mainly produced during the decelerating and accelerating phases (Zhang et al. 2009), ITS actions able to reduce stop&go phases have the potential to reduce BC emissions. This paper investigates the effectiveness of combined ITS actions in urban context in reducing CO2 and BC emissions and improving traffic conditions

    Day-to-day dynamic traffic assignment model with variable message signs and endogenous user compliance

    Get PDF
    This paper proposes a dual-time-scale, day-to-day dynamic traffic assignment model that takes into account variable message signs (VMS) and its interactions with drivers’ travel choices and adaptive learning processes. The within-day dynamic is captured by a dynamic network loading problem with en route update of path choices influenced by the VMS; the day-to-day dynamic is captured by a simultaneous route-and-departure-time adjustment process that employs bounded user rationality. Moreover, we describe the evolution of the VMS compliance rate by modeling drivers’ learning processes. We endogenize traffic dynamics, route and departure time choices, travel delays, and VMS compliance, and thereby captur their interactions and interdependencies in a holistic manner. A case study in the west end of Glasgow is carried out to understand the impact of VMS has on road congestion and route choices in both the short and long run. Our main find- ings include an adverse effect of the VMS on the network performance in the long run (the “rebound” effect), and existence of an equilibrium state where both traffic and VMS compliance are stabilized

    CARBOTRAF: A decision Support system for reducing pollutant emissions by adaptive traffic management

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses all these model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Existence and stability of viscoelastic shock profiles

    Full text link
    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic--parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure

    Reducing environmental impact by adaptive traffic control and management for urban road networks

    Get PDF
    This paper investigates the effectiveness of traffic signal control and variable message sign (VMS) as environmental traffic management tool. The focus is on black carbon and CO2, which are among the highest contributors to climate change. The modelling tool chain adopted to support this study includes traffic microsimulation, emission modelling and dispersion modelling. A number of scenarios have been simulated with different levels of demand and VMS compliance rates. The results demonstrate the potential of these interventions in reducing black carbon and CO2 emissions and improving air quality, as well as reducing traffic congestion and travel delays

    A global analysis of management capacity and ecological outcomes in terrestrial protected areas

    Get PDF
    Protecting important sites is a key strategy for halting the loss of biodiversity. However, our understanding of the relationship between management inputs and biodiversity outcomes in protected areas (PAs) remains weak. Here, we examine biodiversity outcomes using species population trends in PAs derived from the Living Planet Database in relation to management data derived from the Management Effectiveness Tracking Tool (METT) database for 217 population time‐series from 73 PAs. We found a positive relationship between our METT‐based scores for Capacity and Resources and changes in vertebrate abundance, consistent with the hypothesis that PAs require adequate resourcing to halt biodiversity loss. Additionally, PA age was negatively correlated with trends for the mammal subsets and PA size negatively correlated with population trends in the global subset. Our study highlights the paucity of appropriate data for rigorous testing of the role of management in maintaining species populations across multiple sites, and describes ways to improve our understanding of PA performance
    corecore