16 research outputs found

    Vibration Analysis of a Cylindrical Sandwich Panel with Flexible Core Using an Improved Higher-Order Theory

    No full text
    Abstract This paper deals with free vibration analysis of thick cylindrical composite sandwich panels with simply supported boundary conditions based on a new improved higher-order sandwich panel theory. The formulation used the third-order polynomial description for the displacement fields of thick composite face sheets and for the displacement fields in the core layer based on the displacement field of Frostig's second model. In this case, the unknowns were coefficients of the polynomials in addition to displacements of the top and bottom face sheets. The fully dynamic effects of the core layer and face sheets were also considered in this study. Using Hamilton's principle, the governing equations were derived. Moreover, the effect of some important parameters such as those of thickness ratio of the core to panel, the length to radius ratio of the core and composite lay-up sequences were investigated on free vibration response of the panel. The results were validated by those published in the literature and with the finite element results obtained by ABAQUS. It was shown that thicker panels with thicker cores provided greater resistance to resonant vibrations. Moreover, the effect of increasing face sheets’ thicknesses in general was the significant increase in fundamental natural frequency values

    Improved high order free vibration analysis of thick double curved sandwich panels with transversely flexible cores

    No full text
    This paper dealt with free vibration analysis of thick double curved composite sandwich panels with simply supported or fully clamped boundary conditions based on a new improved higher order sandwich panel theory. The formulation used the first order shear deformation theory for composite face sheets and polynomial description for the displacement field in the core layer which was based on the displacement field of Frostig's second model. The fully dynamic effects of the core layer and face sheets were also considered in this study. Using the Hamilton's principle, the governing equations were derived. Moreover, effects of some important parameters like that of boundary conditions, thickness ratio of the core to panel, radii curvatures and composite lay-up sequences were investigated on free vibration response of the panel. The results were validated by those published in the literature and with the FE results obtained by ABAQUS software. It was shown that thicker panels with a thicker core provided greater resistance to resonant vibrations. Also, effect of increasing the core thickness in general was significant decreased fundamental natural frequency values

    High-order modeling of circular cylindrical composite sandwich shells with a transversely compliant core subjected to low velocity impact

    No full text
    In this study, a high-order model for the analysis of circular cylindrical composite sandwich shells subjected to low-velocity impact loads is presented. The sandwich shell is composed of two composite face sheets and a transversely compliant core. The impact behavior of the cylindrical composite sandwich shells is described by a high-order sandwich shell theory. The interaction between the impactor body and the sandwich shell is approximated using a spring mass model. The present analysis is based on an iteration procedure, and yields analytic functions describing the contact force history. The contact force is considered to be distributed uniformly over a contact patch, the size of which depends on the magnitude of the impact load as well as the elastic properties and geometry of the impactor. Finally, the obtained results have been compared with the available experimental results, and a good correlation has been found

    Low Velocity Impact Response of Laminated Composite Truncated Sandwich Conical Shells with Various Boundary Conditions Using Complete Model and GDQ Method

    No full text
    In this paper, the dynamic analysis of the composite sandwich truncated conical shells (STCS) with various boundary conditions subjected to the low velocity impact was studied analytically, based on the higher order sandwich panel theory. The impact was assumed to occur normally over the top face-sheet, and the contact force history was predicted using two solution models of the motion which were derived based on Hamilton’s principle by considering the displacement continuity conditions between the layers⸳ In order to obtain the contact force and the displacement histories, the differential quadrature method (DQM) was used. In this investigation, the effects of different parameters such as the number of layers of the face sheets, the boundary conditions, the semi vertex angle of the cone, and the impact velocity of the impactor on the impact response of the complete model were studied

    Improved high-order bending analysis of double curved sandwich panels subjected to multiple loading conditions

    No full text
    For the first time, the bending analysis of a double curved sandwich panel was presented which was subjected to point load, uniform distributed load on a patch, and harmonic distributed loads and was based on a new improved higher order sandwich panel theory. Since the cross-sectional warping was accurately modeled by this theory, it did not require any shear correction factor. Also, the present analysis incorporated trapezoidal shape factor (the 1+z/R terms) of a curved panel element. Geometry was used for the consideration of different radii curvatures of the face sheets, while the core was unique. Unlike most of other reference works, the core can have non-uniform thickness. The governing equations were derived by the principle of minimum potential energy. The effects of types of boundary conditions, types of applied loads, core to panel, and radii curvatures ratios on the bending response were also studied

    High Order Impact Elastic Analysis of Circular Thick Cylindrical Sandwich Panels Subjected to Multi-mass Impacts

    No full text
    Abstract This study dealt with the dynamic model of composite cylindrical sandwich panels with flexible cores and simply supported boundary conditions under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the core and face sheets. Formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the soft core and face-sheets were considered in this investigation. Impacts were assumed to occur simultaneously and normally over the top face-sheet with arbitrarily different masses and initial velocities. The contact forces between the panel and impactors were treated as the internal forces of the system. In this paper, nonlinear contact stiffness was linearized with a newly presented improved analytical method. Numerical results of the mentioned structures were compared with finite element model using ABAQUS code
    corecore