235 research outputs found
Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors
We report on a comprehensive combined experimental and theoretical study of
Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad
agreement between theoretical expectations and measured data allows us to
conclude that T_c in high-quality metallic samples increases linearly with the
number of uncompensated local moments on Mn_Ga acceptors, with no sign of
saturation. Room temperature ferromagnetism is expected for a 10% concentration
of these local moments. Our magnetotransport and magnetization data are
consistnent with the picture in which Mn impurities incorporated during growth
at interstitial Mn_I positions act as double-donors and compensate neighboring
Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I
antiferromagnetic coupling. These defects can be efficiently removed by
post-growth annealing. Our analysis suggests that there is no fundamental
obstacle to substitutional Mn_Ga doping in high-quality materials beyond our
current maximum level of 6.2%, although this achievement will require further
advances in growth condition control. Modest charge compensation does not limit
the maximum Curie temperature possible in ferromagnetic semiconductors based on
(Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
Mn incorporation in as-grown and annealed (Ga,Mn)As layers studied by x-ray diffraction and standing-wave uorescence
A combination of high-resolution x-ray diffraction and a new technique of
x-ray standing wave uorescence at grazing incidence is employed to study the
structure of (Ga,Mn)As diluted magnetic semiconductor and its changes during
post-growth annealing steps. We find that the film is formed by a uniform,
single crystallographic phase epilayer covered by a thin surface layer with
enhanced Mn concentration due to Mn atoms at random non-crystallographic
positions. In the epilayer, Mn incorporated at interstitial position has a
dominant effect on lattice expansion as compared to substitutional Mn. The
expansion coeffcient of interstitial Mn estimated from our data is consistent
with theory predictions. The concentration of interstitial Mn and the
corresponding lattice expansion of the epilayer are reduced by annealing,
accompanied by an increase of the density of randomly distributed Mn atoms in
the disordered surface layer. Substitutional Mn atoms remain stable during the
low-temperature annealing.Comment: 9 pages, 9 figure
Unlocking the Fertilizer Potential of Waste-Derived Biochar
Mankind is facing a phosphorus (P) crisis. P recycling from anthropogenic waste is critical to close the P loop. Pyrolysis could be the ideal treatment for materials, such as sewage sludge (SS), producing a safe, nutrient-rich biochar product while sequestering the inherent carbon (C). However, pyrolyzed sewage sludge typically contains low levels of potassium (K) and plant available P, making the material rather unsuitable for use as fertilizer. Here, a novel treatment was investigated to produce an optimized P and K biochar fertilizer. We doped sewage sludge with a low-cost mineral (2 and 5% potassium acetate) and pyrolyzed it at 700 °C. The percentage water extractable of the total P content in biochar increased by 237 times with 5% K addition compared to the undoped biochar. After six water extractions, all of the K and 16% of P were obtained. Further optimization is feasible through adjustments of the biochar pH or doping the feedstock with other forms of K. Using X-ray absorption near-edge spectroscopy (XANES) and synchrotron X-ray fluorescence (XRF) mapping, we identified highly soluble potassium hydrogen phosphate up to 200−300 μm below the biochar surface. This simple and cost-effective modification enables the use of sewage sludge as safe biochar fertilizer with tailored P availability that also supplies K, improves soil properties, and sequesters C
S-Benzylthiuronium Salts of Some Barhituric Acid Derivatives*
Preparation and properties of the S-benzylthiuronium salts of fourteen barbituric acid derivatives are described
Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As
We report on a systematic study of optical properties of (Ga,Mn)As epilayers
spanning the wide range of accessible substitutional Mn_Ga dopings. The growth
and post-growth annealing procedures were optimized for each nominal Mn doping
in order to obtain films which are as close as possible to uniform
uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the
mid-infrared absorption spectra whose position exhibits a prevailing blue-shift
for increasing Mn-doping. In the visible range, a peak in the magnetic circular
dichroism blue shifts with increasing Mn-doping. These observed trends confirm
that disorder-broadened valence band states provide a better one-particle
representation for the electronic structure of high-doped (Ga,Mn)As with
metallic conduction than an energy spectrum assuming the Fermi level pinned in
a narrow impurity band.Comment: 22 pages, 14 figure
Winter wheat, winter rape and poppy crop growth evaluation with the help of remote and proximal sensing measurements
Monitoring of agricultural crops with the help of remote and proximal sensors during
the growing season plays important role for site-specific management decisions. Winter wheat,
winter rape and poppy are representatives of typical agricultural crops from the family Poacea,
Brassicaceae and Papaveraceae, growing in relative dry area of Rakovník district in the Czech
Republic. Ten Sentinel 2 satellite images acquired during vegetation season of the crops were
downloaded and processed. Crops were monitored with the help of unmanned aerial vehicles
(UAV) equipped with consumer grade Red Green Blue (RGB) camera and multispectral (MS)
MicaSense RedEdge MX camera. In-field variability was assessed by computing RGB-based
vegetation indices Triangular Greenness Index (TGI), Green Leaf Index (GLI) and Visible
Atmospherically Resistant Index (VARI) and commonly used vegetation indices as Normalised
Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The results derived from
satellite and UAV images were supported with in-situ measurements of hand-held GreenSeeker
and Chlorophyll Meter Content sensors. The study showed the usability of individual vegetation
indices, especially the TGI index for chlorophyll content estimation, and VARI index for green
vegetation fraction detection and leaf area index estimation, in comparison with selected handheld devices. The results showed as well that leaf properties and canopy structure of typical
characteristics of selected families can significantly influence the spectral response of the crops
detected in different phenological stages
Theory of ferromagnetic (III,Mn)V semiconductors
The body of research on (III,Mn)V diluted magnetic semiconductors initiated
during the 1990's has concentrated on three major fronts: i) the microscopic
origins and fundamental physics of the ferromagnetism that occurs in these
systems, ii) the materials science of growth and defects and iii) the
development of spintronic devices with new functionalities. This article
reviews the current status of the field, concentrating on the first two, more
mature research directions. From the fundamental point of view, (Ga,Mn)As and
several other (III,Mn)V DMSs are now regarded as textbook examples of a rare
class of robust ferromagnets with dilute magnetic moments coupled by
delocalized charge carriers. Both local moments and itinerant holes are
provided by Mn, which makes the systems particularly favorable for realizing
this unusual ordered state. Advances in growth and post-growth treatment
techniques have played a central role in the field, often pushing the limits of
dilute Mn moment densities and the uniformity and purity of materials far
beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds,
material quality and magnetic properties are intimately connected. In the
review we focus on the theoretical understanding of the origins of
ferromagnetism and basic structural, magnetic, magneto-transport, and
magneto-optical characteristics of simple (III,Mn)V epilayers, with the main
emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive
literature covering results of complementary ab initio and effective
Hamiltonian computational techniques, and on comparisons between theory and
experiment.Comment: 58 pages, 49 figures Version accepted for publication in Rev. Mod.
Phys. Related webpage: http://unix12.fzu.cz/ms
- …