1,273 research outputs found
Copepod (Crustacea) distribution in the freshwater and hyposaline lakes of the Pantanal of Nhecolandia (Mato Grosso do Sul, Brazil).
Eighteen freshwater and hyposaline lakes of the Nhecolândia floodplain were sampled in two periods, April/03 (beginning of dry period) and March/04 (end of wet period). Dezoito lagoas de água doce e de água hiposalina do Pantanal da Nhecolândia foram amostrados em dois períodos, abril/03 (início da seca) e março/04(fim da cheia)
Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens
© 2019 The Authors. The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers effector proteins into prokaryotic and eukaryotic preys. This secretion system has emerged as a key player in regulating the microbial diversity in a population. In the plant pathogen Agrobacterium tumefaciens, the signalling cascades regulating the activity of this secretion system are poorly understood. Here, we outline how the universal eubacterial second messenger cyclic di‐GMP impacts the production of T6SS toxins and T6SS structural components. We demonstrate that this has a significant impact on the ability of the phytopathogen to compete with other bacterial species in vitro and in planta. Our results suggest that, as opposed to other bacteria, c‐di‐GMP turns down the T6SS in A. tumefaciens thus impacting its ability to compete with other bacterial species within the rhizosphere. We also demonstrate that elevated levels of c‐di‐GMP within the cell decrease the activity of the Type IV secretion system (T4SS) and subsequently the capacity of A. tumefaciens to transform plant cells. We propose that such peculiar control reflects on c‐di‐GMP being a key second messenger that silences energy‐costing systems during early colonization phase and biofilm formation, while low c‐di‐GMP levels unleash T6SS and T4SS to advance plant colonization.Biotechnology and Biological Sciences Research Council. Grant Numbers: BB/L007959/1, BB/M02735X/1
Ministry of Science and Technology, Taiwan. Grant Number: 104-2311-B-001-025-MY
Recommended from our members
Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal
Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndrome
Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions
MgO based magnetic tunnel junctions are prepared to investigate the
dielectric breakdown of the tunnel barrier. The breakdown is directly
visualized by transmission electron microscopy measurements. The broken tunnel
junctions are prepared for the microscopy measurements by focussed ion beam out
of the junctions characterized by transport investigations. Consequently, a
direct comparison of transport behavior and structure of the intact and broken
junctions is obtained. Compared to earlier findings in Alumina based junctions,
the MgO barrier shows much more microscopic pinholes after breakdown. This can
be explained within a simple model assuming a relationship between the current
density at the breakdown and the rate of pinhole formation
Biogenesis of the mitochondrial phosphate carrier
The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct amino-terminus of the mature protein was generated. Import of PiC showed the characteristics of mitochondrial protein uptake, such as dependence on ATP and a membrane potential and involvement of contact sites between mitochondrial outer and inner membranes. The precursor imported in vitro was correctly assembled into the functional form, demonstrating that the authentic import and assembly pathway of PiC was reconstituted when starting with the presequence-carrying precursor. These results are discussed in connection with the recently postulated role of PiC as an import receptor located in the outer membrane
Biogenesis of mitochondrial porin
We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance
Selection of tuning parameters in bridge regression models via Bayesian information criterion
We consider the bridge linear regression modeling, which can produce a sparse
or non-sparse model. A crucial point in the model building process is the
selection of adjusted parameters including a regularization parameter and a
tuning parameter in bridge regression models. The choice of the adjusted
parameters can be viewed as a model selection and evaluation problem. We
propose a model selection criterion for evaluating bridge regression models in
terms of Bayesian approach. This selection criterion enables us to select the
adjusted parameters objectively. We investigate the effectiveness of our
proposed modeling strategy through some numerical examples.Comment: 20 pages, 5 figure
- …