1,420 research outputs found

    Magnetic properties and critical behavior of disordered Fe_{1-x}Ru_x alloys: a Monte Carlo approach

    Full text link
    We study the critical behavior of a quenched random-exchange Ising model with competing interactions on a bcc lattice. This model was introduced in the study of the magnetic behavior of Fe_{1-x}Ru_x alloys for ruthenium concentrations x=0%, x=4%, x=6%, and x=8%. Our study is carried out within a Monte Carlo approach, with the aid of a re-weighting multiple histogram technique. By means of a finite-size scaling analysis of several thermodynamic quantities, taking into account up to the leading irrelevant scaling field term, we find estimates of the critical exponents \alpha, \beta, \gamma, and \nu, and of the critical temperatures of the model. Our results for x=0% are in excellent agreement with those for the three-dimensional pure Ising model in the literature. We also show that our critical exponent estimates for the disordered cases are consistent with those reported for the transition line between paramagnetic and ferromagnetic phases of both randomly dilute and ±J\pm J Ising models. We compare the behavior of the magnetization as a function of temperature with that obtained by Paduani and Branco (2008), qualitatively confirming the mean-field result. However, the comparison of the critical temperatures obtained in this work with experimental measurements suggest that the model (initially obtained in a mean-field approach) needs to be modified

    First-order transitions and triple point on a random p-spin interaction model

    Full text link
    The effects of competing quadrupolar- and spin-glass orderings are investigated on a spin-1 Ising model with infinite-range random pp-spin interactions. The model is studied through the replica approach and a phase diagram is obtained in the limit pp\to\infty. The phase diagram, obtained within replica-symmetry breaking, exhibits a very unusual feature in magnetic models: three first-order transition lines meeting at a commom triple point, where all phases of the model coexist.Comment: 9 pages, 2 ps figures include

    Quantum Trajectory Approach to the Stochastic Thermodynamics of a Forced Harmonic Oscillator

    Full text link
    I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously-monitored forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level systems. Within this formalism the connection between irreversibility and entropy production is analyzed and confirmed by proving a detailed fluctuation theorem for quantum trajectories. Finally, possible experimental verifications are discussed.Comment: 16 pages, 3 figures, submitted to PRE; expanded introduction and conclusion, corrected typos, new figure

    Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model

    Full text link
    A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond-fluctuation model with Wang-Landau and umbrella sampling algorithms in a two-dimensional state space. The simulations' density of states results have been evaluated for interaction parameters spanning the range from good to poor solvent conditions and from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and present results for the overall phase behavior and for some of the transitions. For adsorption in good solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement between the results. For the collapse transition, which occurs when the solvent quality changes from good to poor, we consider two situations corresponding to three-dimensional (hard surface) and two-dimensional (very attractive surface) chain conformations, respectively. For the hard surface, we compare tethered chains with free chains and find very similar behavior for both types of chains. For the very attractive surface, we find the two-dimensional chain collapse to be a two-step transition with the same sequence of transitions that is observed for three-dimensional chains: a coil-globule transition that changes the overall chain size is followed by a local rearrangement of chain segments.Comment: 17 pages, 12 figures, to appear in J. Chem. Phy

    Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction

    Full text link
    We propose a simple theoretical model for a molecular chemical engine that catalyzes a chemical reaction and converts the free energy released by the reaction into mechanical work. Binding and unbinding processes of reactant and product molecules to and from the engine are explicitly taken into account. The work delivered by the engine is calculated analytically for infinitely slow (``pseudo-static'') processes, which can be reversible (quasi-static) or irreversible, controlled by an external agent. It is shown that the work larger than the maximum value limited by the second law of thermodynamics can be obtained in a single cycle of operation by chance, although the statistical average of the work never exceeds this limit and the maximum work is delivered if the process is reversible. The mechanism of the energy transductionis also discussed.Comment: 8 pages, 3 figues, submitted to J. Phys. Soc. Jp

    On the order of BEC transition in weakly interacting gases predicted by mean-field theory

    Full text link
    Predictions from Hartree-Fock (HF), Popov (P), Yukalov-Yukalova (YY) and tt-matrix approximations regarding the thermodynamics from the normal to the BEC phase in weakly interacting Bose gases are considered. By analyzing the dependence of the chemical potential μ\mu on temperature TT and particle density ρ\rho we show that none of them predicts a second-order phase transition as required by symmetry-breaking general considerations. In this work we find that the isothermal compressibility κT\kappa_{T} predicted by these theories does not diverge at criticality as expected in a true second-order phase transition. Moreover the isotherms μ=μ(ρ,T)\mu=\mu(\rho,T) typically exhibit a non-singled valued behavior in the vicinity of the BEC transition, a feature forbidden by general thermodynamic principles. This behavior can be avoided if a first order phase transition is appealed. The facts described above show that although these mean field approximations give correct results near zero temperature they are endowed with thermodynamic anomalies in the vicinity of the BEC transition. We address the implications of these results in the interpretation of current experiments with ultracold trapped alkali gases.Comment: 16 pages, 5 figure

    Theoretical study of the intrinsic magnetic properties of disordered Fe1xRuxFe_{1-x}Ru_x alloys: a mean-field approach

    Full text link
    The magnetic properties of the Fe1xRuxFe_{1-x}Ru_x alloy system for 0 \leq x \leq 0.10 are studied by using a mean-field approximation based on the Bogoliubov inequality. Ferromagnetic Fe-Fe spin correlations and antiferromagnetic Fe-Ru and Ru-Ru exchanges have been considered to describe the temperature dependence of the Curie temperature and low temperature magnetization. A composition dependence has been imposed in the exchange couplings, as indicated by experiments. From a least-square fitting procedure to the experimental results an estimation of the interaction parameters was obtained, which yielded the low temperature dependence of the magnetization and of the ferromagnetic Curie temperature. A good agreement was obtained with available experimental results.Comment: Two figures, to appear in J. Phys. Cond. Matte

    A Study of Heavy-Light Mesons on the Transverse Lattice

    Get PDF
    We present results from a study of meson spectra and structure in the limit where one quark is infinitely heavy. The calculations, based on the framework of light-front QCD formulated on a transverse lattice, are the first non-perturbative studies of B-mesons in light-front QCD. We calculate the Isgur-Wise form factor, light-cone distribution amplitude, the heavy-quark parton distribution function and the leptonic decay constant of B-mesons.Comment: 5 pages, 3 figures, Revtex, corrected typos, added references, included moment

    Effects of Dissipation on Quantum Phase Slippage in Charge Density Wave Systems

    Full text link
    We study the effect of the dissipation on the quantum phase slippage via the creation of ``vortex ring'' in charge density wave (CDW) systems. The dissipation is assumed to come from the interaction with the normal electron near and inside of the vortex core. We describe the CDW by extracted macroscopic degrees of freedom, that is, the CDW phase and the radius of the ``vortex ring'', assume the ohmic dissipation, and investigate the effect in the context of semiclassical approximation. The obtained results are discussed in comparison with experiments. It turns out that the effect of such a dissipation can be neglected in experiments.Comment: 9 pages (revtex), 2 figures, using epsf.st

    Scaling of Traction Forces with Size of Cohesive Cell Colonies

    Full text link
    To understand how the mechanical properties of tissues emerge from interactions of multiple cells, we measure traction stresses of cohesive colonies of 1-27 cells adherent to soft substrates. We find that traction stresses are generally localized at the periphery of the colony and the total traction force scales with the colony radius. For large colony sizes, the scaling appears to approach linear, suggesting the emergence of an apparent surface tension of order 1E-3 N/m. A simple model of the cell colony as a contractile elastic medium coupled to the substrate captures the spatial distribution of traction forces and the scaling of traction forces with the colony size.Comment: 5 pages, 3 figure
    corecore