56,292 research outputs found

    Fitting DVCS at NLO and beyond

    Full text link
    We outline the twist-two analysis of deeply virtual Compton scattering (DVCS)within the conformal partial wave expansion of the amplitude, represented as a Mellin--Barnes integral. The complete next-to-leading order results, including evolution, are obtained in the MS and a conformal factorization scheme. Within the latter, exploiting conformal symmetry, the radiative corrections are evaluated up to next-to-next-to-leading order. Using a new proposed parameterization for GPDs, we study the convergence of perturbation theory and demonstrate for H1 and ZEUS measurements that our formalism is suitable for a fitting procedure of DVCS observables. We comment on a recent claim of a breakdown of collinear factorization and show that a Regge-inspired Q^2 scaling law is ruled out by small x_Bj DVCS data.Comment: 15 pages, 4 figure

    Symmetric Diblock Copolymers in Thin Films (I): Phase stability in Self-Consistent Field Calculations and Monte Carlo Simulations

    Full text link
    We investigate the phase behavior of symmetric AB diblock copolymers confined into a thin film. The film boundaries are parallel, impenetrable and attract the A component of the diblock copolymer. Using a self-consistent field technique [M.W. Matsen, J.Chem.Phys. {\bf 106}, 7781 (1997)], we study the ordered phases as a function of incompatibility χ\chi and film thickness in the framework of the Gaussian chain model. For large film thickness and small incompatibility, we find first order transitions between phases with different number of lamellae which are parallel oriented to the film boundaries. At high incompatibility or small film thickness, transitions between parallel oriented and perpendicular oriented lamellae occur. We compare the self-consistent field calculations to Monte Carlo simulations of the bond fluctuation model for chain length N=32. In the simulations we quench several systems from χN=0\chi N=0 to χN=30\chi N=30 and monitor the morphology into which the diblock copolymers assemble. Three film thicknesses are investigated, corresponding to parallel oriented lamellae with 2 and 4 interfaces and a perpendicular oriented morphology. Good agreement between self-consistent field calculations and Monte Carlo simulations is found.Comment: to appear in J.Chem.Phy

    Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations

    Full text link
    We present an application of Wertheim's Thermodynamic Perturbation Theory (TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean Spherical approximation (MSA) integral equation theories to describe the properties of the reference fluid. The equation of state, the density dependence of the excess chemical potential, and the critical points of the liquid--vapor transition are compared with simulation results and good agreement is found. The RHNC version is somewhat more accurate, while the MSA version has the advantage of being almost analytic. We analyze the scaling behavior of the critical point of chain fluids according to TPT1 and find it to reproduce the mean field exponents: The critical monomer density is predicted to vanish as n1/2n^{-1/2} upon increasing the chain length nn while the critical temperature is predicted to reach an asymptotic finite temperature that is attained as n1/2n^{-1/2}. The predicted asymptotic finite critical temperature obtained from the RHNC and MSA versions of TPT1 is found to be in good agreement with the Θ\Theta point of our polymer model as obtained from the temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy

    Entropic competition in polymeric systems under geometrical confinement

    Full text link
    Using molecular dynamics simulation, we investigate the effect of confinement on a system that comprises several stiff segmented polymer chains where each chain has similar segments, but length and stiffness of the segments vary among the chains which makes the system inhomogeneous. The translational and orientational entropy loss due to the confinement plays a crucial role in organizing the chains which can be considered as an entropy-driven segregation mechanism to differentiate the components of the system. Due to the inhomogeneity, both weak and strong confinement regimes show the competition in the system and we see segregation of chains as the confining volume is decreased. In the case of strong spherical confinement, a chain at the periphery shows higher angular mobility than other chains, despite being more radially constrained.Comment: 16 pages, 11 figure

    Density fields for branching, stiff networks in rigid confining regions

    Full text link
    We develop a formalism to describe the equilibrium distributions for segments of confined branched networks consisting of stiff filaments. This is applicable to certain situations of cytoskeleton in cells, such as for example actin filaments with branching due to the Arp2/3 complex. We develop a grand ensemble formalism that enables the computation of segment density and polarisation profiles within the confines of the cell. This is expressed in terms of the solution to nonlinear integral equations for auxiliary functions. We find three specific classes of behaviour depending on filament length, degree of branching and the ratio of persistence length to the dimensions of the geometry. Our method allows a numerical approach for semi-flexible filaments that are networked.Comment: 15 pages, revise

    Driving steady-state visual evoked potentials at arbitrary frequencies using temporal interpolation of stimulus presentation

    Get PDF
    Date of Acceptance: 29/10/2015 We thank Renate Zahn for help with data collection. This work was supported by Deutsche Forschungsgemeinschaft (AN 841/1-1, MU 972/20-1). We would like to thank A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez and K. BarbaRojo (Universidad Autonoma de Baja California) for making Matlab code for non-sphericity corrections freely available.Peer reviewedPublisher PD

    Fuzzy audio similarity measures based on spectrum histograms and fluctuation patterns

    Get PDF
    Spectrum histograms and fluctuation patterns are representations of audio fragments. By comparing these representations, we can determine the similarity between the corresponding fragments. Traditionally, this is done using the Euclidian distance. We propose fuzzy similarity measures as an alternative. First we introduce some well-known fuzzy similarity measures, together with certain properties that can be desirable or useful in practice. In particular we present several forms of restrictability, which allow to reduce the computation time in practical applications. Next, we show that fuzzy similarity measures can be used to compare spectrum histograms and fluctuation patterns. Finally, we describe some experimental observations for this fuzzy approach of constructing audio similarity measures

    A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors

    Full text link
    In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more localized (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO2_2 layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-TcT_c phase diagram of cuprates at large microstrain as it appears in overoxygenated La2_2CuO4_4.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    An event-based architecture for solving constraint satisfaction problems

    Full text link
    Constraint satisfaction problems (CSPs) are typically solved using conventional von Neumann computing architectures. However, these architectures do not reflect the distributed nature of many of these problems and are thus ill-suited to solving them. In this paper we present a hybrid analog/digital hardware architecture specifically designed to solve such problems. We cast CSPs as networks of stereotyped multi-stable oscillatory elements that communicate using digital pulses, or events. The oscillatory elements are implemented using analog non-stochastic circuits. The non-repeating phase relations among the oscillatory elements drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on a number of CSPs under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.Comment: First two authors contributed equally to this wor
    corecore