1,741 research outputs found

    Coherence-controlled transparency and far-from-degenerate parametric gain in a strongly-absorbing Doppler-broadened medium

    Get PDF
    An inversionless gain of anti-Stokes radiation above the oscillation threshold in an optically-dense far-from-degenerate double-Lambda Doppler-broadened medium accompanied by Stokes gain is predicted. The outcomes are illustrated with numerical simulations applied to sodium dimer vapor. Optical switching from absorption to gain via transparency controlled by a small variation of the medium and of the driving radiation parameters which are at a level less than one photon per molecule is shown. Related video/audio clips see in: A.K. Popov, S.A. Myslivets, and T.F. George, Optics Express Vol. 7, No 3, 148 (2000)(http://epubs.osa.org/oearchive/source/22947.htm) or download: http://kirensky.krasn.ru/popov/opa/opa.htmComment: 4 pages, 3 eps figures, to be published in Optics Letters, vol.25, No 18 (2000), minor style changes and reference correctio

    Opto-mechanical transducers for long-distance quantum communication

    Get PDF
    We describe a new scheme to interconvert stationary and photonic qubits which is based on indirect qubit-light interactions mediated by a mechanical resonator. This approach does not rely on the specific optical response of the qubit and thereby enables optical quantum interfaces for a wide range of solid state spin and charge based systems. We discuss the implementation of quantum state transfer protocols between distant nodes of a large scale network and evaluate the effect of the main noise sources on the resulting state transfer fidelities. For the specific examples of electronic spin qubits and superconducting charge qubits we show that high fidelity quantum communication protocols can be implemented under realistic experimental conditions.Comment: Version as accepted by PR

    Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions

    Full text link
    We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically induced transparency (EIT). In particular, we study the regime of efficient nonlinear conversion with low-intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear interaction Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics this Hamiltonian does not have a power expansion in the fields and the conversion length increases with the input power. We analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical analysis for up to 10310^3 input photons and compare the results with a mean-field approach. Due to quantum effects, complete conversion from the two pump fields into the signal and idler modes is achieved only asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and idler fields are perfectly quantum correlated which has potential applications in quantum communication schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum computation.Comment: 10 pages, 11 figure

    Quantum magnetism with multicomponent polar molecules in an optical lattice

    Full text link
    We consider bosonic dipolar molecules in an optical lattice prepared in a mixture of different rotational states. The 1/r^3 interaction between molecules for this system is produced by exchanging a quantum of angular momentum between two molecules. We show that the Mott states of such systems have a large variety of non-trivial spin orderings including a state with ordering wave vector that can be changed by tilting the lattice. As the Mott insulating phase is melted, we also describe several exotic superfluid phases that will occur

    Collective Phase Chaos in the Dynamics of Interacting Oscillator Ensembles

    Full text link
    We study chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchrony, the exchange of excitations between two subpopulations proceeds in such a way that their collective phases are governed by an expanding circle map similar to the Bernoulli map. We perform the Lyapunov analysis of the dynamics and discuss finite-size effects.Comment: 19 page
    • …
    corecore