1,628 research outputs found

    Validation of a method for measuring sperm quality and quantity in reproductive toxicity tests with pair-breeding male fathead minnows (Pimephales promelas)

    Get PDF
    This article originally appeared in the ILAR e-Journal. It is reprinted with permission from the ILAR Journal, Institute for Laboratory Animal Research, National Research Council, Washington DC (www.nationalacademies.org/ilar).The fathead minnow (Pimephales promelas) is an OECD-proposed test species routinely used in reproductive toxicity trials with suspected endocrine-disrupting compounds (EDCs). The basic fecundity, endocrinology, and histopathology of reproductively active male and female fathead minnows has been well characterized, but there are few studies of the utility of male sperm concentration and motility as endpoints for use in reproductive trials. The purpose of this study was to (1) characterize the baseline sperm concentration and motility of pair-breeding male fathead minnows over their spawning cycle and (2) determine whether a repeated and nondestructive sperm sampling protocol would influence the baseline fecundity of the fish. Pair-breeding male fathead minnows that underwent sampling for milt three times a week for 4 weeks exhibited no significant changes in milt volume, sperm concentration, or motility parameters up to 6 days after each spawning event. The repeated sperm sampling procedure did, however, cause a significant lowering of spawning frequencies, although this decline did not correlate with effects on fecundity as there were no significant changes in the mean total numbers of eggs laid, fertilization, and hatching successes. This study confirmed the presence of a stable background of sperm concentration and motility parameters of pair-breeding male fathead minnows under reference conditions. The absence of any inherent “cycling” in the magnitude of these parameters over the spawning period suggests that sperm concentration and motility could be useful measures of male reproductive toxicity at the termination of tests in which pair-breeding males are at varying days post spawn.The research described was funded by the EU project Comparative Research on Endocrine Disrupters (COMPRENDO) Institute of Zoology Regents Park, London, contract No. EVK1-CT-2002-00129E

    Shifting donor-acceptor photoluminescence in N-doped ZnO

    Full text link
    We have grown nitrogen-doped ZnO films grown by two kinds of epitaxial methods on lattice-matched ScAlMgO4_4 substrates. We measured the photoluminescence (PL) of the two kinds of ZnO:N layers in the donor-acceptor-pair transition region. The analysis of excitation-intensity dependence of the PL peak shift with a fluctuation model has proven that our observed growth-technique dependence was explained in terms of the inhomogeneity of charged impurity distribution. It was found that the inhomogeneity in the sample prepared with the process showing better electrical property was significantly smaller in spite of the similar nitrogen concentration. The activation energy of acceptor has been evaluated to be 170\approx 170 meV, which is independent of the nitrogen concentration.Comment: 4 pages, 3 figures, 1 table, RevTeX4, to appear in the July issue of J. Phys. Soc. Jp

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO

    Get PDF
    We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (Eel=2   MeV, fluence 6×10 exp 17   cm exp −2) ZnO samples. The Zn vacancies are identified at concentrations of [VZn]≃2×10 exp 15   cm exp −3 in the as-grown material and [VZn]≃2×10 exp 16   cm exp −3 in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.Peer reviewe

    Introduction and recovery of point defects in electron-irradiated ZnO

    Get PDF
    We have used positron annihilation spectroscopy to study the introduction and recovery of point defects in electron-irradiated n-type ZnO. The irradiation (Eel=2MeV, fluence 6×10 exp 17 cm exp −2) was performed at room temperature, and isochronal annealings were performed from 300 to 600 K. In addition, monochromatic illumination of the samples during low-temperature positron measurements was used in identification of the defects. We distinguish two kinds of vacancy defects: the Zn and O vacancies, which are either isolated or belong to defect complexes. In addition, we observe negative-ion-type defects, which are attributed to O interstitials or O antisites. The Zn vacancies and negative ions act as compensating centers and are introduced at a concentration [VZn]≃cion≃2×10 exp 16 cm exp −3. The O vacancies are introduced at a 10-times-larger concentration [VO]≃3×10 exp 17 cm exp −3 and are suggested to be isolated. The O vacancies are observed as neutral at low temperatures, and an ionization energy of 100 meV could be fitted with the help of temperature-dependent Hall data, thus indicating their deep donor character. The irradiation-induced defects fully recover after the annealing at 600 K, in good agreement with electrical measurements. The Zn vacancies recover in two separate stages, indicating that the Zn vacancies are parts of two different defect complexes. The O vacancies anneal simultaneously with the Zn vacancies at the later stage, with an activation energy of EmV,O = 1.8 ± 0.1 eV. The negative ions anneal out between the two annealing stages of the vacancies.Peer reviewe

    On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos

    Full text link
    The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant Λeff\Lambda_{eff} which is the sum of the quantum zero point energy Λdarkenergy\Lambda_{dark energy} and the geometric cosmological constant Λ\Lambda. The OPERA experiment can be applied to determine the geometric cosmological constant Λ\Lambda. It is the first time to distinguish the contributions of Λ\Lambda and Λdarkenergy\Lambda_{dark energy} from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter space-time symmetry.Comment: 7 pages, no figure

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    Low-Temperature Growth of High Resistivity GaAs by Photoassisted Metalorganic Chemical Vapor Deposition

    Get PDF
    We report the photoassisted low‐temperature (LT) metalorganic chemical vapor deposition (MOCVD) of high resistivity GaAs. The undoped as‐grown GaAs exhibits a resistivity of ∼106 Ω cm, which is the highest reported for undoped material grown in the MOCVD environment. Photoassisted growth of doped and undoped device quality GaAs has been achieved at a substrate temperature of 400 °C in a modified atmospheric pressure MOCVD reactor. By using silane as a dopant gas, the LT photoassisted doped films have high levels of doping and electron mobilities comparable to those achieved by MOCVD for growth temperatures, Tg≳600 °C
    corecore