161 research outputs found
Differential Effects of an ED-to-Home Care Transitions Intervention in an Older Adult Population: A Latent Class Analysis
BACKGROUND: Older adults frequently return to the emergency department (ED) within 30 days of a visit. High-risk patients can differentially benefit from transitional care interventions. Latent class analysis (LCA) is a model-based method used to segment the population and test intervention effects by subgroup.
OBJECTIVES: We aimed to identify latent classes within an older adult population from a randomized controlled trial evaluating the effectiveness of an ED-to-home transitional care program and test whether class membership modified the intervention effect.
RESEARCH DESIGN: Participants were randomized to receive the Care Transitions Intervention or usual care. Study staff collected outcomes data through medical record reviews and surveys. We performed LCA and logistic regression to evaluate the differential effects of the intervention by class membership.
SUBJECTS: Participants were ED patients (age 60 y and above) discharged to a community residence.
MEASURES: Indicator variables for the LCA included clinically available and patient-reported data from the initial ED visit. Our primary outcome was ED revisits within 30 days. Secondary outcomes included ED revisits within 14 days, outpatient follow-up within 7 and 30 days, and self-management behaviors.
RESULTS: We interpreted 6 latent classes in this study population. Classes 1, 4, 5, and 6 showed a reduction in ED revisit rates with the intervention; classes 2 and 3 showed an increase in ED revisit rates. In class 5, we found evidence that the intervention increased outpatient follow-up within 7 and 30 days (odds ratio: 1.81, 95% CI: 1.13-2.91; odds ratio: 2.24, 95% CI: 1.25-4.03).
CONCLUSIONS: Class membership modified the intervention effect. Population segmentation is an important step in evaluating a transitional care intervention
Multimethod Process Evaluation of a Community Paramedic Delivered Care Transitions Intervention for Older Emergency Department Patients
OBJECTIVE: We assessed fidelity of delivery and participant engagement in the implementation of a community paramedic coach-led Care Transitions Intervention (CTI) program adapted for use following emergency department (ED) visits.
METHODS: The adapted CTI for ED-to-home transitions was implemented at three university-affiliated hospitals in two cities from 2016 to 2019. Participants were aged ≥60 years old and discharged from the ED within 24 hours of arrival. In the current analysis, participants had to have received the CTI. Community paramedic coaches collected data on program delivery and participant characteristics at each transition contact via inventories and assessments. Participants provided commentary on the acceptability of the adapted CTI. Using a multimethod approach, the CTI implementation was assessed quantitatively for site- and coach-level differences. Qualitatively, barriers to implementation and participant satisfaction with the CTI were thematically analyzed.
RESULTS: Of the 863 patient participants, 726 (84.1%) completed their home visits. Cancellations were usually patient-generated (94.9%). Most planned follow-up visits were successfully completed (94.6%). Content on the planning for red flags and post-discharge goal setting was discussed with high rates of fidelity overall (95% and greater), while content on outpatient follow-up was lower overall (75%). Differences in service delivery between the two sites existed for the in-person visit and the first phone follow-up, but the differences narrowed as the study progressed. Participants showed a 24.6% increase in patient activation (i.e., behavioral adoption) over the 30-day study period (
CONCLUSIONS: Community paramedic coaches delivered the adapted CTI with high fidelity across geographically distant sites and successfully facilitated participant engagement, highlighting community paramedics as an effective resource for implementing such patient-centered interventions
Connective Memory Work on Justice for Mike Brown
This chapter addresses what I term the "connective memory work" carried out on Facebook page dedicated to achieving justice for Michael Brown, an African America teenager whose death at the gun of white police officer Darren Wilson in early August 2014 led to the Ferguson protests. The chapter outlines four types of connective memory work evident on the page. These types include the ‘memetic resurrection’ that involved the appropriation of iconic historical imagery alongside those of networked commemoration, digital archiving and curation, and crowd reconstruction. Central to this contribution the call to rethink the digital memory work practices of activists so as to integrate a concern for the agency of social media platforms themselves.<br/
Bacterial Toxicity of Potassium Tellurite: Unveiling an Ancient Enigma
Biochemical, genetic, enzymatic and molecular approaches were used to demonstrate, for the first time, that tellurite (TeO(3) (2−)) toxicity in E. coli involves superoxide formation. This radical is derived, at least in part, from enzymatic TeO(3) (2−) reduction. This conclusion is supported by the following observations made in K(2)TeO(3)-treated E. coli BW25113: i) induction of the ibpA gene encoding for the small heat shock protein IbpA, which has been associated with resistance to superoxide, ii) increase of cytoplasmic reactive oxygen species (ROS) as determined with ROS-specific probe 2′7′-dichlorodihydrofluorescein diacetate (H(2)DCFDA), iii) increase of carbonyl content in cellular proteins, iv) increase in the generation of thiobarbituric acid-reactive substances (TBARs), v) inactivation of oxidative stress-sensitive [Fe-S] enzymes such as aconitase, vi) increase of superoxide dismutase (SOD) activity, vii) increase of sodA, sodB and soxS mRNA transcription, and viii) generation of superoxide radical during in vitro enzymatic reduction of potassium tellurite
Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models
Deep Eutectic Solvents (DESs) and their applications [forthcoming]
Deep Eutectic Solvents (DESs) and Their Application
Revelations About Carotid Body Function Through its Pathological Role in Resistant Hypertension
Much recent attention has been given to the carotid body because of its potential role in cardiovascular disease states. One disease, neurogenic hypertension, characterised by excessive sympathetic activity, appears dependent on carotid body activity that may or may not be accompanied by sleep-disordered breathing. Herein, we review recent literature suggesting that the carotid body acquires tonicity in hypertension. We predict that carotid glomectomy will be a powerful way to temper excessive sympathetic discharge in diseases such as hypertension. We propose a model to explain that signalling from the ‘hypertensive’ carotid body is tonic, and hypothesise that there will be a sub-population of glomus cells that channel separately into reflex pathways controlling sympathetic motor outflows
- …