714 research outputs found

    Integrating evolutionary and regulatory information with a multispecies approach implicates genes and pathways in obsessive-compulsive disorder

    Get PDF
    Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 x 10(-11)) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with symptoms including intrusive thoughts and time-consuming repetitive behaviors. Here Noh and colleagues identify genes enriched for functional variants associated with increased risk of OCD

    A comparative genomics multitool for scientific discovery and conservation

    Get PDF
    The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity

    How to make a rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world\u27s largest rodent

    Get PDF
    Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world\u27s largest living rodent. We found that the genome-wide ratio of non-synonymous to synonymous mutations (omega) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly-neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling post-natal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer

    Transcriptomes from German shepherd dogs reveal differences in immune activity between atopic dermatitis affected and control skin

    Get PDF
    Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease with both genetic and environmental risk factors described. We performed mRNA sequencing of non-lesional axillary skin biopsies from nine German shepherd dogs. Obtained RNA sequences were mapped to the dog genome (CanFam3.1) and a high-quality skin transcriptome was generated with 23,510 expressed gene transcripts. Differentially expressed genes (DEGs) were defined by comparing three controls to five treated CAD cases. Using a leave-one-out analysis, we identified seven DEGs: five known to encode proteins with functions related to an activated immune system (CD209, CLEC4G, LOC102156842 (lipopolysaccharide-binding protein-like), LOC480601 (regakine-1-like), LOC479668 (haptoglobin-like)), one (OBP) encoding an odorant-binding protein potentially connected to rhinitis, and the last (LOC607095) encoding a novel long non-coding RNA. Furthermore, high mRNA expression of inflammatory genes was found in axillary skin from an untreated mild CAD case compared with healthy skin. In conclusion, we define genes with different expression patterns in CAD case skin helping us understand post-treatment atopic skin. Further studies in larger sample sets are warranted to confirm and to transfer these results into clinical practice

    A Genome Assembly-Integrated Dog 1 Mb BAC Microarray: A Cytogenetic Resource for Canine Cancer Studies and Comparative Genomic Analysis

    Get PDF
    Molecular cytogenetic studies have been instrumental in defining the nature of numerical and structural chromosome changes in human cancers, but their significance remains to be fully understood. The emergence of high quality genome assemblies for several model organisms provides exciting opportunities to develop novel genome-integrated molecular cytogenetic resources that now permit a comparative approach to evaluating the relevance of tumor-associated chromosome aberrations, both within and between species. We have used the dog genome sequence assembly to identify a framework panel of 2,097 bacterial artificial chromosome (BAC) clones, selected at intervals of approximately one megabase. Each clone has been evaluated by multicolor fluorescence in situ hybridization (FISH) to confirm its unique cytogenetic location in concordance with its reported position in the genome assembly, providing new information on the organization of the dog genome. This panel of BAC clones also represents a powerful cytogenetic resource with numerous potential applications. We have used the clone set to develop a genome-wide microarray for comparative genomic hybridization (aCGH) analysis, and demonstrate its application in detection of tumor-associated DNA copy number aberrations (CNAs) including single copy deletions and amplifications, regional aneuploidy and whole chromosome aneuploidy. We also show how individual clones selected from the BAC panel can be used as FISH probes in direct evaluation of tumor karyotypes, to verify and explore CNAs detected using aCGH analysis. This cytogenetically validated, genome integrated BAC clone panel has enormous potential for aiding gene discovery through a comparative approach to molecular oncology.Organismic and Evolutionary Biolog

    The meadow jumping mouse genome and transcriptome suggest mechanisms of hibernation [preprint]

    Get PDF
    Hibernating mammals exhibit medically relevant phenotypes, but the genetic basis of hibernation remains poorly understood. Using the meadow jumping mouse (Zapus hudsonius), we investigated the genetic underpinnings of hibernation by uniting experimental and comparative genomic approaches. We assembled a Z. hudsonius genome and identified widespread expression changes during hibernation in genes important for circadian rhythm, membrane fluidity, and cell cycle arrest. Tissue-specific gene expression changes during torpor encompassed Wnt signaling in the brain and structural and transport functions in the kidney brush border. Using genomes from the closely related Zapus oregonus (previously classified as Z. princeps) and leveraging a panel of hibernating and non-hibernating rodents, we found selective pressure on genes involved in feeding behavior, metabolism, and cell biological processes potentially important for function at low body temperature. Leptin stands out with elevated conservation in hibernating rodents, implying a role for this metabolic hormone in triggering fattening and hibernation. These findings illustrate that mammalian hibernation requires adaptation at all levels of organismal form and function and lay the groundwork for future study of hibernation phenotypes

    Системний підхід у соціальній адаптації студентів-іноземців

    Get PDF
    SUMMARY: High-throughput genotyping and sequencing technologies facilitate studies of complex genetic traits and provide new research opportunities. The increasing popularity of genome-wide association studies (GWAS) leads to the discovery of new associated loci and a better understanding of the genetic architecture underlying not only diseases, but also other monogenic and complex phenotypes. Several softwares are available for performing GWAS analyses, R environment being one of them. RESULTS: We present cgmisc, an R package that enables enhanced data analysis and visualisation of results from GWAS. The package contains several utilities and modules that complement and enhance the functionality of the existing software. It also provides several tools for advanced visualisation of genomic data and utilises the power of the R language to aid in preparation of publication-quality figures. Some of the package functions are specific for the domestic dog (Canis familiaris) data. AVAILABILITY: The package is operating system-independent and is available from: https://github.com/cgmisc-team/cgmisc CONTACT: [email protected]

    A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts

    Get PDF
    © 2018, The Author(s). Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1–10). Fisher’s exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects
    corecore