4,288 research outputs found

    Level-of-Aspiration Theory and Initial Stance in Bargaining

    Get PDF
    This research focuses on the effect of initial stance in bargaining. Following level-of-aspiration theory, the research examines whether the pattern of early concession making modifies the impact of tough vs. soft initial stance. The experiment manipulated opponent\u27s concession pattern (decreasing, constant, increasing) in the early phase of bargaining within an overall tough or soft initial stance. Results indicated that a decreasing concession pattern within the early bargaining extracted larger initial concessions than a constant or increasing concession pattern. Implications for Siegel and Fouraker\u27s (1960) level-of-aspiration theory are discussed

    Loop-Erasure of Plane Brownian Motion

    Full text link
    We use the coupling technique to prove that there exists a loop-erasure of a plane Brownian motion stopped on exiting a simply connected domain, and the loop-erased curve is the reversal of a radial SLE2_2 curve.Comment: 10 page

    Restriction Properties of Annulus SLE

    Full text link
    For κ(0,4]\kappa\in(0,4], a family of annulus SLE(κ;Λ)(\kappa;\Lambda) processes were introduced in [14] to prove the reversibility of whole-plane SLE(κ)(\kappa). In this paper we prove that those annulus SLE(κ;Λ)(\kappa;\Lambda) processes satisfy a restriction property, which is similar to that for chordal SLE(κ)(\kappa). Using this property, we construct n2n\ge 2 curves crossing an annulus such that, when any n1n-1 curves are given, the last curve is a chordal SLE(κ)(\kappa) trace.Comment: 37 page

    Cardy's Formula for Certain Models of the Bond-Triangular Type

    Full text link
    We introduce and study a family of 2D percolation systems which are based on the bond percolation model of the triangular lattice. The system under study has local correlations, however, bonds separated by a few lattice spacings act independently of one another. By avoiding explicit use of microscopic paths, it is first established that the model possesses the typical attributes which are indicative of critical behavior in 2D percolation problems. Subsequently, the so called Cardy-Carleson functions are demonstrated to satisfy, in the continuum limit, Cardy's formula for crossing probabilities. This extends the results of S. Smirnov to a non-trivial class of critical 2D percolation systems.Comment: 49 pages, 7 figure

    Turning Brownfields into Jobfields

    Get PDF
    A handbook for practitioners and citizens on making brownfields development work

    Quantitative estimates of discrete harmonic measures

    Full text link
    A theorem of Bourgain states that the harmonic measure for a domain in Rd\R^d is supported on a set of Hausdorff dimension strictly less than dd \cite{Bourgain}. We apply Bourgain's method to the discrete case, i.e., to the distribution of the first entrance point of a random walk into a subset of Zd\Z ^d, d2d\geq 2. By refining the argument, we prove that for all \b>0 there exists \rho (d,\b)N(d,\b), any xZdx \in \Z^d, and any A{1,...,n}dA\subset \{1,..., n\}^d | \{y\in\Z^d\colon \nu_{A,x}(y) \geq n^{-\b} \}| \leq n^{\rho(d,\b)}, where νA,x(y)\nu_{A,x} (y) denotes the probability that yy is the first entrance point of the simple random walk starting at xx into AA. Furthermore, ρ\rho must converge to dd as \b \to \infty.Comment: 16 pages, 2 figures. Part (B) of the theorem is ne

    Stationarity of SLE

    Full text link
    A new method to study a stopped hull of SLE(kappa,rho) is presented. In this approach, the law of the conformal map associated to the hull is invariant under a SLE induced flow. The full trace of a chordal SLE(kappa) can be studied using this approach. Some example calculations are presented.Comment: 14 pages with 1 figur

    On the spatial Markov property of soups of unoriented and oriented loops

    Full text link
    We describe simple properties of some soups of unoriented Markov loops and of some soups of oriented Markov loops that can be interpreted as a spatial Markov property of these loop-soups. This property of the latter soup is related to well-known features of the uniform spanning trees (such as Wilson's algorithm) while the Markov property of the former soup is related to the Gaussian Free Field and to identities used in the foundational papers of Symanzik, Nelson, and of Brydges, Fr\"ohlich and Spencer or Dynkin, or more recently by Le Jan
    corecore